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Abstract
SPOAN syndrome is a neurodegenerative disorder mainly characterized by spastic paraplegia, optic atrophy and neuropathy
(SPOAN). Affected patients are wheelchair bound after 15 years old, with progressive joint contractures and spine deformities.
SPOAN patients also have sub normal vision secondary to apparently non-progressive congenital optic atrophy. A potential
causative genewasmapped at 11q13 ten years ago. Herewe performed next-generation sequencing in SPOAN-derived samples.
While whole-exome sequencing failed to identify the causative mutation, whole-genome sequencing allowed to detect a
homozygous 216-bp deletion (chr11.hg19:g.66,024,557_66,024,773del) located at the non-coding upstream region of the KLC2
gene. Expression assays performed with patient’s fibroblasts and motor neurons derived from SPOAN patients showed KLC2
overexpression. Luciferase assay in constructs with 216-bp deletion confirmed the overexpression of gene reporter, varying
from 48 to 74%, as compared with wild-type. Knockdown and overexpression of klc2 in Danio rerio revealed mild to severe
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curly-tail phenotype, which is suggestive of a neuromuscular disorder. Overexpression of a gene caused by a small deletion in
the non-coding region is a novel mechanism, which to the best of our knowledge, was never reported before in a recessive
condition. Although the molecular mechanism of KLC2 up-regulation still remains to be uncovered, such example adds to the
importance of non-coding regions in human pathology.

Introduction
Hereditary spastic paraplegias (HSPs) are common neurodegen-
erative genetic disorders in which patients present progressive
spasticity and lower limbs weakness. Up to date, more than 70
loci had been associated with HSPs and at least 50 genes have
been identified (1). In 2005, our group identified in a geographic
isolate in the backlands of Northeastern Brazil, 26 Caucasian in-
dividuals belonging to consanguineous families with an auto-
somal recessive (AR) complicated form of HSP, which associates
spastic paraplegia, optic atrophy and neuropathy (SPOAN syn-
drome, OMIM #609541) (2). This condition is characterized by
onset of progressive spastic paraplegia in infancy, and progres-
sive motor and sensory axonal neuropathy in late childhood/
early adolescence leading to severe motor disability. All patients
are wheelchair bound after 15 years old, with progressive joint
contractures and spine deformities. Patients also have sub nor-
mal vision secondary to apparently non-progressive congenital
optic atrophy, dysarthria starting in the third decade of life and
exacerbated acoustic startle response. Patients show no intellec-
tual impairment. Ten years after the genemapping,more than 70
individuals from this cluster, three unrelated affected individuals
from Southern and Southeast Brazil, and a pair of Egyptian sib-
lings were diagnosed with SPOAN. Although, all patients share
the same haplotype spanning 2.3 Mb into chromosome region
11q13, Sanger sequencing of candidate genes failed to reveal
the causative gene (3). Herewe describe the SPOAN causativemu-
tation, a small deletion in the non-coding region that causes gene
overexpression. Gain of function in a recessive condition is a
novel mechanism that, to the best of our knowledge, was never
reported before.

Results
Next-generation sequencing and SPOAN mutation

Whole-exome sequencing (WES) was performed in genomic DNA
from one Brazilian and one Egyptian patient diagnosed with
SPOAN syndrome. We identified six homozygous variants at
the critical region, but population frequency and segregation
analysis excluded four variants, while the remaining two were
SNPs located in non-coding region, suggesting that these two
were unlikely to be associated to the clinical phenotype (Supple-
mentary Material, Table S1). Although WES failed to reveal the
SPOANmutation, the sequencing allowed us to refine the critical
interval on chromosome 11q13 to 1.77 Mb, between markers
rs508548 (A>G at 65,626,289 position in CFL1) and an undescribed
variant located at 67,395,410 (G>C in NUDT8). Next, using whole-
genome sequencing (WGS), we identified a homozygous 216-bp
deletion (chr11.hg19:g.66,024,557_66,024,773del), located at
the non-coding upstream region of kinesin light chain-2 (KLC2)
(Supplementary Material, Fig. S1). This variant was detected in
homozygosity in all affected Brazilian individuals (n = 73), and
in the Egyptian affected siblings, while it was not present in
homozygosity in 111 healthy Brazilian relatives. This 216-bp
deletion was also absent in 474 Brazilian healthy controls and
is not described in the 1000 genomes database.

Gene expression analysis

To verify if the deletion affects the expression level of genes lo-
cated in SPOAN critical region, we performed expression array
using cDNA from fibroblasts. Several genes (n = 23; Supplemen-
tary Material, Table S2) showed differential expression in pa-
tients compared with controls (P < 0.01). Unexpectedly, this
assay revealed KLC2 overexpression. Quantitative reverse tran-
scription PCR (RT-qPCR) performed using fibroblast cDNA sam-
ples confirmed the expression array results (Fig. 1A). We next
generated induced pluripotent stem-cells (iPSC)whichwere differ-
entiated into motor neurons (MN). RT-qPCR using MN samples
revealed KLC2 up-regulation in SPOAN patients compared with
healthy controls, confirming the over expression observed in the
previous experiments (Fig. 1C). Also we investigated KLC2 expres-
sion in blood, usinga larger numberof cDNAsamples fromhealthy
controls, heterozygotes and affected individuals. This assay did
not reveal any difference in expression levels between heterozy-
gotes compared with SPOAN’s and to healthy controls (Fig. 1E).

To investigate if the 216-bp deletion is the cause of KLC2 up-
regulation, we performed luciferase gene reporter assay using
three cell lines (HEK293T, U87MG and MN), which were trans-
fected with two constructs: a KLC2 wild-type promoter and
KLC2 216-bp deleted regulatory region driving the Luciferase
gene. In the three cell lines, the construct with the 216-bp dele-
tion produced a luciferase activity increment compared with
wild-type promoter, varying from 48 to 74% (Fig. 1F).

Klc2 knockdown and overexpression in Danio rerio

We then used Danio rerio as an animal model to study the ‘in vivo’
effect of klc2 knockdown and overexpression. Knockdown regula-
tion was achieved by microinjecting zebrafish embryos with two
different klc2 morpholinos (translation blocking morpholino
[MOklc2-TB] and splice morpholino [MOklc2-SP]), each one at doses
of 4 and 6 ng. Mild phenotype was defined for embryos showing
curly-tail and circular swimming whereas severe phenotype for
embryos with dramatically shortened and twisted tail and that
were unable to swim. Both phenotypes became evident at 48-h
post fertilization (hpf) (Fig. 2A). In all cases, statistically significant
differenceswereobservedbetweenmismatch-MOandspecific-MO
injected embryos. For bothmorpholino strategieswhen comparing
to the respective mismatch-MO controls, an increase in lethality
and/or frequencyof phenotypeswasmainlyobserved indetriment
of normal phenotype. Furthermore, this difference was more
evident when higher amount of either MOklc2-TB or MOklc2-SP was
injected (Fig. 2B). Phenotype rescue assays were performed by co-
injection of 100 pg of mRNAklc2-eGFP and splice morpholino at 6 ng
(Fig. 2C), and an improvement of ∼33% (P < 0.01), from severe to
mild phenotype, was consistently observed (Fig. 2D).

As SPOAN syndrome seems to result from KLC2 up-regulation,
we mimicked this condition in zebrafish by microinjecting
mRNAklc2-eGFP in specific concentrations in embryos. Fluorescent
embryos displayed similar phenotype to klc2morphants (Fig. 3A).
A high lethality (over than 70%) was observed in embryos micro-
injected with mRNAklc2-eGFP at 200 pg at 24-hpf stage and we ex-
cluded this concentration data in phenotype analysis (Fig. 3B).
We observed higher frequency of curly-tail phenotype in
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embryos microinjected with mRNAklc2-eGFP compared with con-
trol (mRNAeGFP), being statistical significant in embryos microin-
jected at 150 pg mRNA concentration (P < 0.05) (Fig. 3C).

Discussion
We previously mapped the SPOAN gene, responsible for a syn-
dromic form of AR spastic paraplegia, at 11q13 (2,3). Based on
next-generation sequencing, we were able to uncover a new
causative mechanism for this condition. We observed that a
small deletion in KLC2 non-coding region is responsible for the
gene up-regulation and SPOAN phenotype. Additionally, BSCL2
and FLRT1, two genes previously associated with HSP and located
nearby but outside the 11q13 critical region, were excluded as
candidates (4,5). The Egyptian patients reported in this study as
SPOAN carried the c.T2023C (stop loss) homozygous mutation
in FLRT1, and were previously assigned by Novarino et al. (5)
(Family 709) as SPG68. However, here we suggest that 216-bp
deletion, shared by all SPOAN patients, is probably the causative
mutation in both Egyptian siblings, rather than the reported
FLRT1 mutation.

KLC2 codes for KLC2, a protein involved in anterograde axo-
plasmatic transport of organelles and macromolecules cargoes
(6–10). KLC2 is a part of kinesin protein-1 complex (11), which
binds to kinesins heavy chain in a stoichiometric ratio of 1:1
(12), being highly expressed in neurons. Several neurodegenera-
tive diseases show impairment in axonal transport (13,14) and
some kinesins heavy chains (KIF5A, KIF1A and KIF1C) have been
associated with HSP (15–18). Animal models have also shown

that disturbance of axonal transport proteins cause neurodegen-
erative disease and axon degeneration (10,19–21). Although the
disease mechanism described here involves a homozygous dele-
tion inanon-coding region, all these observationsstronglysuggest
that KCL2 is the causative gene for SPOAN.

According to the RepeatMask database, KLC2 upstream region
was generated by a non-LTR retrotransposon (L3/CR-1) insertion.
DNA footprint and alignment of L3/CR-1 did not show conserva-
tion among distant species, but the high conservation observed
among primates suggests it was inserted during the divergence
of primates from othermammals. In several human populations,
KLC2 surrounding region (10-kb up- and downstream) and three
described SNPs surrounding the mutation location have low fix-
ation index (FST) (Supplementary Material, Fig. S2) (rs116801155,
rs190099601 and rs76627914 with FST of 0.0044, 0.0002 and
0.0427, respectively), indicating a high conservation in humans.

Surprisingly, the small deletion in its non-coding upstream
region causes KLC2 overexpression, suggesting a novel molecular
mechanism never report before, a gain of function in recessive
condition. Intriguingly, the 216-bp deletion overlaps 9-bp of
5′-untranslated region (5′-UTR) of the largest KLC2 transcript
(NM_001134775.1), which means that this mutation is located at
KLC2 promoter region (upstream of the transcription start site
[TSS]) and it should cause gene downregulation instead gain of
function. Although this region has characteristics of a promoter
(enrichment of H3Kme3, DNase I hypersensitive sites [DHS],
RNA pol II binding sites, etc.), transcription factors complexes
that bind at this region may act as transcriptional repressor,
which could explain the gene up-regulation. Additionally, this

Figure 1. Effect of 216-bp deletion on KLC2 expression. (A) Relative expression of KLC2measured by RT-qPCR performed on fibroblast cDNA isolated from SPOAN patients

and healthy controls (P < 0.05; Nonparametric test [Mann–Whitney]). (B) KLC2 relative expression measured on fibroflast samples from individual patients and healthy

controls. (C) Relative expression of KLC2 measured by RT-qPCR using MN. (D) KLC2 relative expression measured on MN samples from individual patients and healthy

controls. (E) KLC2 relative expression measured on whole-blood cDNA samples from affected (homozygotes), heterozygotes and healthy controls. Each RT-qPCR

experiment was performed in triplicate and each sample was replicated twice. (F) Expression of luciferase reporter gene controlled by the 216-bp-deleted KLC2

regulatory region relative to the expression controlled by the wild-type KLC2 regulatory region measured in HEK293 T, U87MG and MN cells. Each experiment was

performed in triplicate and each cell type was replicated twice (P < 0.05; One-way ANOVA).
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deletion overlaps an unspliced antisense long non-coding RNA
(lncRNA, AU311830.1) and regulatory elements: DHS, several
transcription factors binding sites (TFBS), histone marks and
DNA methylation (Supplementary Material, Fig. S1). Thus, a dis-
ruption of this non-coding and regulatory region might alter the
expression level of downstream genes, which can explain SPOAN
gain of function.

Expression analysis showed an unexpected KLC2 overexpres-
sion from fibroblast andMN SPOAN samples. Because SPOAN is a
recessive condition, we tried to check the KLC2 expression pat-
tern in heterozygous samples. Whole-blood samples collected
from a large number of heterozygotes did not reveal increased
KLC2 expression,when comparedwith homozygotes andhealthy
controls. These results suggest a tissue-specific effect since
216-bp deletion causes KLC2 up-regulation in fibroblast and MN
cell-lines, but does not in blood. Also, luciferase assay showed
that reporter constructs with 216-bp deletion have increased
luciferase activity when compared with the wild-type. These
results support the hypothesis that the 216-bp deletion located
at non-coding region is likely the responsible for the KLC2
overexpression.

Zebrafish has been an interesting animal model used in gen-
etic studies due to its fast embryonic development and the fact it
carries several human orthologues genes. The percentages of

lethality and animals with curly-tail phenotype observed in
morphants in this study were similar to those reported in several
reports that employed zebrafish for other HSP (22–28).Microinjec-
tion of mRNAklc2-eGFP in zebrafish embryos showed a similar
phenotype of klc2 morphants, which reinforces our hypothesis
that klc2 is an essential gene for MN function and development.
Thus, we hypothesize that imbalance of KLC2 gene expression
results in neurodegenerative phenotype in humans.

Gene overexpression had been associated with several neuro-
logical disorders but none of them have AR inheritance. For
example, duplication or triplication of PLP1 cause Pelizaeus-Merz-
bacher disease (OMIM #312080) (29–33) and PMP22 duplication
causes Charcot-Marie-Tooth disease type 1A (OMIM #118220), a
hereditary demyelinating neuropathy (34,35). Variants detected
upstream APP region were associated with up-regulation of APP
protein in Alzheimer disease and Down syndrome patients (36).
Additionally, downregulation or complete disruption of protein
synthesis is usually the common mechanism in HSP in which
functional studies have been conducted. For instance, this is the
case in X-linked [e.g. L1CAM (37)], autosomal dominant [e.g. ATL1
(38) and SPAST (39)] andARconditions [as SPG20 (40) and FA2H (41)].

In short, several unexpected and surprising results were
observed during SPOAN syndrome molecular investigation.
Although the molecular mechanism of this up-regulation still

Figure 2. Effect of klc2 knockdown in zebrafish. (A) (a and d) Embryos microinjected with control splicing blocking morpholino: (a) misMOklc2-SP4ng (d) misMOklc2-SP6ng.

(b, c, e and f ) Embryos microinjected with splicing blocking morpholino: (b and c) MOklc2-SP4ng (e and f) MOklc2-SP6ng. Normal (a and d), mild curly-tail (b and e) and

severe curly-tail (c–f ) phenotypes were recorded at 48-hpf. (B) Frequencies of observed phenotypes among morphants. Number of microinjected embryos: MOklc2-TB4ng

(292); misMOklc2-TB4ng (305); MOklc2-TB6ng (103); misMOklc2-TB6ng (249); MOklc2-SP4ng (283); misMOklc2-SP4ng (234); MOklc2-SP6ng (423); misMOklc2-SP6ng (370). P < 0.01, χ2 test. (C)
Fluorescent embryo coinjected with 6 ng MOklc2-SP and 100 pg mRNAklc2-eGFP (selected by fluorescence at 24-hpf) showing mil-curly tails was recorded at 48-hpf. Scale

bar 200 µm. (D) Embryos coinjected with 6 ng MOklc2-SP and 100 pg mRNAklc2-eGFP (n = 70 embryos) showed a partial rescue of morphant phenotype compared with

MOklc2-SP6ng (n = 30 embryos). P < 0.01, χ2 test.
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remains to be uncovered, it adds another example of the import-
ance of non-coding regions in human pathology.

Materials and Methods
Patients

Clinical information regarding SPOAN patients in the geographic
cluster detected in northeastern Brazil was detailed elsewhere
(2,3). Additionally, we evaluated another three Brazilian patients,
with different ancestors from northeastern Brazil and two Egyp-
tians siblings with the identified 216-bp deletion and same clin-
ical symptoms. Blood sampleswere used for DNAextraction from
all patients, from several obligated carriers and from unaffected
siblings. Fibroblasts were obtained from dermal biopsies from
five patients, one heterozygote and four Brazilian healthy con-
trols, following informed consent under protocols approved by
the Biosciences Institute, University of São Paulo (Protocol CEP
010/2003).

Molecular analysis

Previous studies conducted by our group using Sanger sequen-
cing did not identify deleterious variants in exons of candidates
genes located in the critical region for SPOAN (LRFN4, KLC2 and
CCS) (3). To have a more comprehensive and detailed view over
this region, WES was performed using DNA samples from two
SPOAN subjects using Agilent SureSelect Human All Exon
50 Mb Kit and sequenced in Illumina HiSeq2000 (Illumina, San
Diego, CA, USA). Alignment against reference GRCh37 was

performed with BWA (42); genotyping with GATK (43); SNP and
InDel annotation with Annovar (44) and CNV detection with the
R package ExomeDepth (45). The WES coverage achieved at the
candidate region was 40× and 77× in the Egyptian and Brazilian
samples, respectively. The 216-bp deletion was not detectable
by WES. Variants detected in the mapped linkage region were
filtered by their frequency, compared with 1000 Genomes data-
base, NHLBI GO Exome Sequencing Project (ESP), ExomeAggrega-
tion Consortium (ExAC) and with sequences obtained from 1484
Brazilian controls.

Whole-genome sequencing was performed in DNA from a
third affected patient (a distant cousin from Brazilian series)
using Illumina TruSeq DNA kit. Alignment against reference
GRCh37 was performed with BWA (42); genotyping with GATK
(43); SNP and InDel annotation with SnpEff (46) and CNV detec-
tion using R package ExomeDepth (45) restricted to exon regions
(using bedfile template of the Agilent V4Plus kit), Pindel and add-
itional manual screening in the target linkage region. The
achieved coverage at the candidate region was 26×. Variants
were filtered by comparison with 1000 Genomes. SPOAN muta-
tion (chr11.hg19:g.66,024,557_66,024,773del) was checked for co-
segregation in affected and family health controls (also checked
in 474 unrelated health controls) by PCR followed by agarose gel
electrophoresis using primer ID 1 (Supplementary Material,
Table S3).

Induced pluripotent stem-Cells (iPSC)

Retrovirus vectors containing the Oct4, c-Myc, Klf4 and Sox2
human cDNAs were obtained from Muotri’s group and the

Figure 3. Effect of klc2 overexpression in zebrafish. (A) (a and b) Embryos microinjected with 100 pg of mRNAeGFP and (c–f ) embryos microinjected with 100 pg of

mRNAklc2-eGFP were selected by fluorescence at 24-hpf, and recorded at 48-hpf. (a and b) Normal Embryos, (c and d) mild curly-tail and (e and f) severe curly-tail

phenotypes. Scale bars: (a and b) 200 µm; (c–f ) 100 µm. (B) Lethality frequency observed in embryos at 24-hpf stage. Embryos microinjected with 200 pg mRNAklc2-eGFP

showed high lethality and were excluded form phenotype analysis. (C) Frequencies of observed phenotypes among GFP-fluorescent embryos. Numbers of embryos

selected by fluorescence: mRNAklc2-eGFP-100pg = 32; mRNAeGFP-100pg = 16; mRNAklc2-eGFP-150pg = 43; mRNAklc2-eGFP-150pg = 52. P < 0.05, χ2 and Fisher’s exact tests.
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protocol is described elsewhere (47). Embryoid bodies (EBs) were
formed by mechanical dissociation of cell clusters (pre-treated
with dorsomorphin, 1 nM, for 2 days) andplating onto low-adher-
ence dishes in NB media (DMEM/F12 plus 0.5X N2 and 0.5X B27
supplements) plus dorsomorphin for 2 days and in the next 5
days in NB media plus FGF and EGF. After that, mature EBs were
dissociatedwith accutase for 5 min at 37°C and plated inmatrigel
in NB media plus FGF 20 ng/ml and EGF 20 ng/ml. Rosettes were
visible for collection after 7 days and were then dissociated
with accutase (Chemicon, EMD Millipore, Darmstadt, Germany)
and plated onto poly-ornitine/laminin-coated dishes (Sigma)
with NB media plus FGF and EGF. Homogeneous populations of
neural progenitor cells (NPCs) were achieved after 1–2 passages
with accutase in the same condition. To improve cell differenti-
ation, brain-derived neurotrophic factor (20 ng/ml), glial cell-
derived neurotrophic factor (20 ng/ml), insulin-like growth
factor-1 (20 ng/ml), Ri (5uM) and SHH (100 ng/ml; neuronal mat-
uration medium) were added to neuronal cultures for 5 weeks.
NPCs were differentiated in MN following a protocol modified
from study described elsewhere (48).

Human RNA extraction and cDNA synthesis

RNA extraction from fibroblasts (n = 5 affected; n = 1 heterozygote;
n = 4 healthy controls) and MN (n = 3 affected; n = 1 heterozygote;
n = 3 healthy controls) was performed with TRIZOL® reagent
(Invitrogen) and Norgen Biotek RNA/DNA/Protein Purification
Kit (Norgen Biotek Corp., Ontario, Canada); RNA from whole-
blood (n = 7 affected; n = 7 heterozygotes; n = 6 family healthy
controls +1 unrelated healthy control from the same region)
were extracted using PAXgene Blood RNA Kit (Qiagen); RNA was
reverse-transcribed with oligo(dT) primers using SuperScript™
III First-strand Synthesis System (Life Technologies).

Expression array

Fibroblast cDNA samples were submitted to array expression
assay using GeneChip® Scanner 3000 7G System (Affymetrix,
Santa Clara, CA, USA). The results of expression array were nor-
malized by Robust Multi-array Average (49) and statistical meth-
od (test-T) was performed using CLCbio Genomics Workbench,
adjusted by Bonferroni and false discovery rate (FDR). Data were-
submitted to GEO (accession number: GSE67527).

Quantitative reverse transcription PCR (RT-qPCR)

KLC2 primers for RT-qPCR were detailed in Supplementary
Material, Table S3 (primer ID 2). RT-qPCR was normalized to
GAPDH and was performed using LightCycler® 480 (Roche Diag-
nostics).KLC2 expression datawere calculated using 2−ΔΔCTmeth-
od (50). Mann–Whitney test (Nonparametric) was performed
using GraphPad Prism version 5.00 (San Diego, CA, USA). Each
experiment was performed in triplicate and each sample was
replicated twice.

TaqManGeneExpressionAssayprobes:MNX1/HB9 (Hs00907365_
m1), CHAT (Hs00252848_m1) and ISL1 (Hs00158126_m1) were
used to validate the neurons derived cells from iPSC as MN
(Applied Biosystems, USA). RT-qPCR was normalized to Human
ACTB (β-actin; Hs01060665_g1). RT-qPCR was performed using
the Applied Biosystems® 7500 Fast Real-time PCR System.

Immunofluorescence and MN validation

For immunofluorescence evaluation of MN, cells were fixed with
4% paraformaldehyde, followed by permeabilization and

blocking with 0.05% (v/v) Triton X in PBS containing 5% (v/v) don-
key serum. Primary antibodies were incubated overnight at 4°C.
Samples were washed three times before secondary antibodies
incubation (Alexa Fluor Dyes, Life Technologies). Dapi was
added in the last 20 min of secondary antibody incubation. Pri-
mary antibody concentrations were: a-NeuN mouse monoclonal
1:500 (Millipore); a-Hb9mouse polyclonal 1:500 (DSHB) and a-Islet
1 rabbit polyclonal 1:1000 (BD Bio-science). Images were obtained
through Axio Observer.A1 immunofluorescence microscope
(Zeiss). cDNA obtained from fibroblasts, NPC and MN were used
for MN validation using TaqMan probes described above. RT-
qPCR using fibroblast samples did not show expression of MN
probes. RT-qPCR of MN samples showed expression of MNX1/
HB9 probe,whichwasnot amplified inNPC samples.MN samples
showed higher significant (P < 0.05) expression of CHAT com-
pared with NPC (Supplementary Material, Fig. S3B). We con-
firmed the presence of 216-bp deletion in DNA extracted from
MN patient samples (Supplementary Material, Fig. S3C).

Gene reporter assay

The full-length (3,313-bp) and deleted 216-bp (3,097-bp) KLC2 up-
stream region was synthesized (Genone) and cloned into promo-
terless firefly luciferase vector pGL4 (Promega). pShuttle/RL was
used for transfection normalization, which expresses the report-
er gene Renilla luciferase (51). Assays using HEK239T, U87MG and
MN about 1 × 104 cells were plated in 96-well dishes in triplicate
for each point. In HEK239T and U87MG a total of 200 ng of plas-
mids (180 ng pGL4 and 20 ng pShuttle/RL) were used for transfec-
tion using Lipofectamine 2000 Transfection Reagent (Invitrogen).
InMNweused 480 ng pGL4 and 20 ng pShuttle/RL. Two days after
DNA transfection, the luciferase activities weremeasured in Glo-
max luminometer (Promega) with the Dual-Glo Luciferase Assay
System (Promega) according to manufacturer’s instructions.
One-way ANOVA was performed using GraphPad Prism version
5.00 (San Diego, CA, USA).

Zebrafish animal model

Adult zebrafish weremaintained at 28°C on a 14 h light/10 h dark
cycle and the embryos were obtained by natural mating. Zebra-
fish presents only one klc2 gene in its genome (ZFIN ID: ZDB-
GENE-030131-2670), which turns appropriate the use Danio rerio
as animal model in this study. The use of Danio rerio in this
study was approved by the Committee on the Ethics of Animal
Experiments of PharmacologyandBiochemistry Sciences depart-
ment of National University of Rosario, Argentina (No. 429/2014).

Zebrafish RNA extraction and cDNA synthesis

Total RNAwas extracted fromwhole embryos at different embry-
onic stages (6, 24, 48 and 72-hpf). RNA extraction was performed
using TRIZOL® reagent (Invitrogen), following the manufac-
turer’s protocol. First-strand cDNAwas synthetized using Super-
Script Reverse Transcriptase (Invitrogen) with a specific primer
(primer ID 3) for Danio rerio klc2 gene transcript (Ensembl EN-
SDARG00000075485). The complete klc2 CDS was amplified by
PCR using primers ID 4, forward including EcoRI and reverse in-
cluding SacI restriction sites.

Plasmids and DNA constructs

The complete CDS sequence from klc2 (mRNAklc2) was cloned
using EcoRI and SacI sites into an engineered version of pCS2
+MT as described elsewhere (52). This plasmid was used to
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transcribe mRNAklc2-eGFP coding for KLC2 fused to eGFP. Plasmid
without klc2 insert was used to transcribe mRNAeGFP as a control.
FormRNAklc2-eGFPandmRNAeGFP transcription, plasmidswere lin-
earized by NotI and the SP6 promoter was used for in vitro tran-
scription using mMESSAGE mMACHINE® Kit (Ambion, Applied
Biosystems). The mRNAklc2-eGFP was used to perform the overex-
pression assay and for rescue of morphant’s phenotype.

Knockdown and overexpression assays

Microinjection of morpholino oligonucleotides (MO) in the yolk of
embryos at one- to two-cell stage were performed in specific
concentrations (4 and 6 ng). Translation blocking morpholino
(MOklc2-TB) sequence was 5′-GGTGGACATCACCCACTGACACACA-3′
(misMOklc2-TB was 5′-GGaGcACATgACCCAgTcACACACA-3′) and
splicing blocking morpholino (MOklc2-SP) sequence was 5′-CGTGT
GTGTTTCACCTGTGCTTCCC-3′ (misMOklc2-SP was 5′-CGTcTcT
GTTTgACCTcTcCTTCCC-3′). MOklc2-SP target exon 2 of klc2 gene.
The rescue of phenotype was performed by co-injecting 6 ng
MOklc2-SP and 100 pg mRNAklc2-eGFP in the yolk of embryos staged
at one- to two-cells. Chi-square and Fisher’s exact tests were per-
formed using GraphPad Prism version 5.00 (San Diego, CA, USA).

Overxpression of klc2 gene in zebrafish was performed by mi-
croinjectingmRNAklc2-eGFPat specific concentrations (100, 150 and
200 pg), as described in previous study (53). Same concentrations
of mRNAeGFP were microinjected in zebrafish embryos to be used
as controls. Both microinjected embryos (mRNAklc2-eGFP and
mRNAeGFP) were selected by fluorescence at 24-hpf stage and
evaluated at 48-hpf under MVX10 Olympus Microscope, and re-
corded with MVXTV1XC Olympus digital camera. Chi-square
test was performed using GraphPad Prism version 5.00 (San
Diego, CA, USA).
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Supplementary Material is available at HMG online.
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