134 research outputs found

    Urea Cycle Related Amino Acids Measured in Dried Bloodspots Enable Long-Term In Vivo Monitoring and Therapeutic Adjustment

    Get PDF
    BACKGROUND: Dried bloodspots are easy to collect and to transport to assess various metabolites, such as amino acids. Dried bloodspots are routinely used for diagnosis and monitoring of some inherited metabolic diseases. METHODS: Measurement of amino acids from dried blood spots by liquid chromatography-tandem mass spectrometry. RESULTS: We describe a novel rapid method to measure underivatised urea cycle related amino acids. Application of this method enabled accurate monitoring of these amino acids to assess the efficacy of therapies in argininosuccinate lyase deficient mice and monitoring of these metabolites in patients with urea cycle defects. CONCLUSION: Measuring urea cycle related amino acids in urea cycle defects from dried blood spots is a reliable tool in animal research and will be of benefit in the clinic, facilitating optimisation of protein-restricted diet and preventing amino acid deprivation

    Genomics Reveals the Worldwide Distribution of Multidrug-Resistant Serotype 6E Pneumococci.

    Get PDF
    To access publisher's full text version of this article, please click on the hyperlink in Additional Links field or click on the hyperlink at the top of the page marked Files. This article is open access.The pneumococcus is a leading pathogen infecting children and adults. Safe, effective vaccines exist, and they work by inducing antibodies to the polysaccharide capsule (unique for each serotype) that surrounds the cell; however, current vaccines are limited by the fact that only a few of the nearly 100 antigenically distinct serotypes are included in the formulations. Within the serotypes, serogroup 6 pneumococci are a frequent cause of serious disease and common colonizers of the nasopharynx in children. Serotype 6E was first reported in 2004 but was thought to be rare; however, we and others have detected serotype 6E among recent pneumococcal collections. Therefore, we analyzed a diverse data set of ∼1,000 serogroup 6 genomes, assessed the prevalence and distribution of serotype 6E, analyzed the genetic diversity among serogroup 6 pneumococci, and investigated whether pneumococcal conjugate vaccine-induced serotype 6A and 6B antibodies mediate the killing of serotype 6E pneumococci. We found that 43% of all genomes were of serotype 6E, and they were recovered worldwide from healthy children and patients of all ages with pneumococcal disease. Four genetic lineages, three of which were multidrug resistant, described ∼90% of the serotype 6E pneumococci. Serological assays demonstrated that vaccine-induced serotype 6B antibodies were able to elicit killing of serotype 6E pneumococci. We also revealed three major genetic clusters of serotype 6A capsular sequences, discovered a new hybrid 6C/6E serotype, and identified 44 examples of serotype switching. Therefore, while vaccines appear to offer protection against serotype 6E, genetic variants may reduce vaccine efficacy in the longer term because of the emergence of serotypes that can evade vaccine-induced immunity

    When one phenotype is not enough: divergent evolutionary trajectories govern venom variation in a widespread rattlesnake species

    Get PDF
    Artículo 10 páginas, 3 figuras 1 tablaUnderstanding the origin and maintenance of phenotypic variation, particularly across a continuous spatial distribution, represents a key challenge in evolutionary biology. For this, animal venoms represent ideal study systems: they are complex, variable, yet easily quantifiable molecular phenotypes with a clear function. Rattlesnakes display tremendous variation in their venom composition, mostly through strongly dichotomous venom strategies, which may even coexist within a single species. Here, through dense, widespread population-level sampling of the Mojave rattlesnake, Crotalus scutulatus, we show that genomic structural variation at multiple loci underlies extreme geographical variation in venom composition, which is maintained despite extensive gene flow. Unexpectedly, neither diet composition nor neutral population structure explain venom variation. Instead, venom divergence is strongly correlated with environmental conditions. Individual toxin genes correlate with distinct environmental factors, suggesting that different selective pressures can act on individual loci independently of their co-expression patterns or genomic proximity. Our results challenge common assumptions about diet composition as the key selective driver of snake venom evolution and emphasize how the interplay between genomic architecture and local-scale spatial heterogeneity in selective pressures may facilitate the retention of adaptive functional polymorphisms across a continuous space.Funding: Leverhulme Trust Grant RPG 2013-315 to WW, Santander Early Career Research Scholarship to GZ, Ministerio de Economía y Competitividad Grant BFU2013-42833-P to JJC.Peer reviewe

    Direct Comparison of Immunogenicity Induced by 10-or 13-Valent Pneumococcal Conjugate Vaccine around the 11-Month Booster in Dutch Infants

    Get PDF
    BACKGROUND & AIMS: Since 2009/10, a 10- and a 13-valent pneumococcal conjugate vaccine (PCV) are available, but only the 10-valent vaccine is now being used for the children in the Netherlands. As the vaccines differ in number of serotypes, antigen concentration, and carrier proteins this study was designed to directly compare quantity and quality of the antibody responses induced by PCV10 and PCV13 before and after the 11-month booster. METHODS: Dutch infants (n = 132) were immunized with either PCV10 or PCV13 and DTaP-IPV-Hib-HepB at the age of 2, 3, 4 and 11 months. Blood samples were collected pre-booster and post-booster at one week and one month post-booster for quantitative and qualitative immunogenicity against 13 pneumococcal serotypes, as well as quantitative immunogenicity against diphtheria, tetanus, pertussis and Haemophilus influenzae type b. We compared immunogenicity induced by PCV13 and PCV10 for their ten shared serotypes. RESULTS: One month post-booster, pneumococcal serotype-specific IgG geometric mean concentrations (GMCs) for the PCV13 group were higher compared with the PCV10 group for six serotypes, although avidity was lower. Serotype 19F showed the most distinct difference in IgG and, in contrast to other serotypes, its avidity was higher in the PCV13 group. One week post-booster, opsonophagocytosis for serotype 19F did not differ significantly between the PCV10- and the PCV13 group. CONCLUSION: Both PCV10 and PCV13 were immunogenic and induced a booster response. Compared to the PCV10 group, the PCV13 group showed higher levels for serotype 19F GMCs and avidity, pre- as well as post-booster, although opsonophagocytosis did not differ significantly between groups. In our study, avidity is not correlated to opsonophagocytotic activity (OPA) and correlations between IgG and OPA differ per serotype. Therefore, besides assays to determine IgG GMCs, assays to detect opsonophagocytotic activity, i.e., the actual killing of the pneumococcus, are important for PCV evaluation. How differences between the two vaccines relate to long-term protection requires further investigation. TRIAL REGISTRATION: www.trialregister.nl NTR3069

    The new COST Action European Venom Network (EUVEN)—synergy and future perspectives of modern venomics

    Get PDF
    Venom research is a highly multidisciplinary field that involves multiple subfields of biology, informatics, pharmacology, medicine, and other areas. These different research facets are often technologically challenging and pursued by different teams lacking connection with each other. This lack of coordination hampers the full development of venom investigation and applications. The COST Action CA19144–European Venom Network was recently launched to promote synergistic interactions among different stakeholders and foster venom research at the European level

    Modern venomics – Current insights, novel methods and future perspectives in biological and applied animal venom research

    Get PDF
    Venoms have evolved >100 times in all major animal groups, and their components, known as toxins, have been fine-tuned over millions of years into highly effective biochemical weapons. There are many outstanding questions on the evolution of toxin arsenals, such as how venom genes originate, how venom contributes to the fitness of venomous species, and which modifications at the genomic, transcriptomic, and protein level drive their evolution. These questions have received particularly little attention outside of snakes, cone snails, spiders, and scorpions. Venom compounds have further become a source of inspiration for translational research using their diverse bioactivities for various applications. We highlight here recent advances and new strategies in modern venomics and discuss how recent technological innovations and multi-omic methods dramatically improve research on venomous animals. The study of genomes and their modifications through CRISPR and knockdown technologies will increase our understanding of how toxins evolve and which functions they have in the different ontogenetic stages during the development of venomous animals. Mass spectrometry imaging combined with spatial transcriptomics, in situ hybridization techniques, and modern computer tomography gives us further insights into the spatial distribution of toxins in the venom system and the function of the venom apparatus. All these evolutionary and biological insights contribute to more efficiently identify venom compounds, which can then be synthesized or produced in adapted expression systems to test their bioactivity. Finally, we critically discuss recent agrochemical, pharmaceutical, therapeutic, and diagnostic (so-called translational) aspects of venoms from which humans benefit

    Arm rotated medially with supination – the ARMS variant: description of its surgical correction

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Patients who have suffered obstetric brachial plexus injury (OBPI) have a high incidence of musculoskeletal complications stemming from the initial nerve injury. The presence of muscle imbalances and contractures leads to typical bony changes affecting the shoulder, including the SHEAR (Scapular Hypoplasia, Elevation and Rotation) deformity. The SHEAR deformity commonly occurs in conjunction with Medial Rotation Contracture (MRC) of the arm. OBPI also causes muscle imbalances at the level of the forearm, that lead to a fixed supination deformity (SD) in a small number of patients. Both MRC and SD will cause severe functional limitations without surgical intervention.</p> <p>Methods</p> <p>Fourteen OBPI patients were diagnosed with MRC of the shoulder and SD of the forearm along with SHEAR deformity during a 16 month study period, with eight patients available to long-term follow-up (age range 2.2 – 18 years). Surgical correction of the MRC was performed as a triangle tilt or humeral osteotomy depending on the age of the child, after which, the patients were treated with a radial osteotomy to correct the fixed supination deformity. Function was assessed using the modified Mallet scale, examination of apparent supination and appearance of the extremity at rest.</p> <p>Results</p> <p>Significant functional improvements were observed in patients with surgical reconstruction. Mallet score increased by an average of 5.2 (p < 0.05). Overall forearm position was not significantly changed from an average of 5° to an average of 34° maximum apparent supination after both shoulder rotation and forearm rotation corrective surgeries.</p> <p>Conclusion</p> <p>The simultaneous presence of two opposing deformities in the same limb will visually offset each other at the level of the wrist and hand, giving the false impression of neutral positioning of the limb. In reality, the neutral-appearing position of the hand indicates a fixed supination posture of the forearm in the face of a medial rotation contracture of the shoulder. Both of these deformities require surgical attention, and the presence of concurrent MRC and SD should be monitored for in OBPI patients.</p

    INCITE: A randomised trial comparing constraint induced movement therapy and bimanual training in children with congenital hemiplegia

    Get PDF
    Background: Congenital hemiplegia is the most common form of cerebral palsy (CP) accounting for 1 in 1300 live births. These children have limitations in capacity to use the impaired upper limb and bimanual coordination deficits which impact on daily activities and participation in home, school and community life. There are currently two diverse intensive therapy approaches. Traditional therapy has adopted a bimanual approach (BIM training) and recently, constraint induced movement therapy (CIMT) has emerged as a promising unimanual approach. Uncertainty remains about the efficacy of these interventions and characteristics of best responders. This study aims to compare the efficacy of CIMT to BIM training to improve outcomes across the ICF for school children with congenital hemiplegia

    Metacarpal Descent, Definition and Normal Range

    No full text
    corecore