613 research outputs found

    Impurity state in Haldane gap for S=1 Heisenberg antiferromagnetic chain with bond doping

    Full text link
    Using a new impurity density matrix renormalization group scheme, we establish a reliable picture of how the low lying energy levels of a S=1S=1 Heisenberg antiferromagnetic chain change {\it quantitatively} upon bond doping. A new impurity state gradually occurs in the Haldane gap as J<JJ' < J, while it appears only if J/J>γcJ'/J>\gamma_c with 1/γc=0.7081/\gamma_c=0.708 as J>JJ'>J. The system is non-perturbative as 1J/Jγc1\leq J'/J\leq\gamma_c. This explains the appearance of a new state in the Haldane gap in a recent experiment on Y2x_{2-x}Cax_xBaNiO5_5 [J.F. DiTusa, et al., Phys. Rev. Lett. 73 1857(1994)].Comment: 4 pages of uuencoded gzip'd postscrip

    Spectral hardness evolution characteristics of tracking Gamma-ray Burst pulses

    Full text link
    Employing a sample presented by Kaneko et al. (2006) and Kocevski et al. (2003), we select 42 individual tracking pulses (here we defined tracking as the cases in which the hardness follows the same pattern as the flux or count rate time profile) within 36 Gamma-ray Bursts (GRBs) containing 527 time-resolved spectra and investigate the spectral hardness, EpeakE_{peak} (where EpeakE_{peak} is the maximum of the νFν\nu F_{\nu} spectrum), evolutionary characteristics. The evolution of these pulses follow soft-to-hard-to-soft (the phase of soft-to-hard and hard-to-soft are denoted by rise phase and decay phase, respectively) with time. It is found that the overall characteristics of EpeakE_{peak} of our selected sample are: 1) the EpeakE_{peak} evolution in the rise phase always start on the high state (the values of EpeakE_{peak} are always higher than 50 keV); 2) the spectra of rise phase clearly start at higher energy (the median of EpeakE_{peak} are about 300 keV), whereas the spectra of decay phase end at much lower energy (the median of EpeakE_{peak} are about 200 keV); 3) the spectra of rise phase are harder than that of the decay phase and the duration of rise phase are much shorter than that of decay phase as well. In other words, for a complete pulse the initial EpeakE_{peak} is higher than the final EpeakE_{peak} and the duration of initial phase (rise phase) are much shorter than the final phase (decay phase). This results are in good agreement with the predictions of Lu et al. (2007) and current popular view on the production of GRBs. We argue that the spectral evolution of tracking pulses may be relate to both of kinematic and dynamic process even if we currently can not provide further evidences to distinguish which one is dominant. Moreover, our statistical results give some witnesses to constrain the current GRB model.Comment: 32 pages, 26 figures, 3 tables, accepted for publication in New Astronom

    Single Atom and Two Atom Ramsey Interferometry with Quantized Fields

    Get PDF
    Implications of field quantization on Ramsey interferometry are discussed and general conditions for the occurrence of interference are obtained. Interferences do not occur if the fields in two Ramsey zones have precise number of photons. However in this case we show how two atom (like two photon) interferometry can be used to discern a variety of interference effects as the two independent Ramsey zones get entangled by the passage of first atom. Generation of various entangled states like |0,2>+|2,0> are discussed and in far off resonance case generation of entangled state of two coherent states is discussed.Comment: 20 pages, 5 figures, revised version. submitted to Phys. Rev.

    Polarization quantum properties in type-II Optical Parametric Oscillator below threshold

    Get PDF
    We study the far field spatial distribution of the quantum fluctuations in the transverse profile of the output light beam generated by a type II Optical Parametric Oscillator below threshold, including the effects of transverse walk-off. We study how quadrature field correlations depend on the polarization. We find spatial EPR entanglement in quadrature-polarization components: For the far field points not affected by walk-off there is almost complete noise suppression in the proper quadratures difference of any orthogonal polarization components. We show the entanglement of the state of symmetric intense, or macroscopic, spatial light modes. We also investigate nonclassical polarization properties in terms of the Stokes operators. We find perfect correlations in all Stokes parameters measured in opposite far field points in the direction orthogonal to the walk-off, while locally the field is unpolarized and we find no polarization squeezing.Comment: 16 pages, 18 figure

    Exact soliton solution and inelastic two-soliton collision in spin chain driven by a time-dependent magnetic field

    Full text link
    We investigate dynamics of exact N-soliton trains in spin chain driven by a time-dependent magnetic field by means of an inverse scattering transformation. The one-soliton solution indicates obviously the spin precession around the magnetic field and periodic shape-variation induced by the time varying field as well. In terms of the general soliton solutions N-soliton interaction and particularly various two-soliton collisions are analyzed. The inelastic collision by which we mean the soliton shape change before and after collision appears generally due to the time varying field. We, moreover, show that complete inelastic collisions can be achieved by adjusting spectrum and field parameters. This may lead a potential technique of shape control of soliton.Comment: 5 pages, 5 figure

    Analysis of particle production in ultra-relativistic heavy ion collisions within a two-source statistical model

    Full text link
    The experimental data on hadron yields and ratios in central lead-lead and gold-gold collisions at 158 AGeV/cc (SPS) and s=130\sqrt{s} = 130 AGeV (RHIC), respectively, are analysed within a two-source statistical model of an ideal hadron gas. A comparison with the standard thermal model is given. The two sources, which can reach the chemical and thermal equilibrium separately and may have different temperatures, particle and strangeness densities, and other thermodynamic characteristics, represent the expanding system of colliding heavy ions, where the hot central fireball is embedded in a larger but cooler fireball. The volume of the central source increases with rising bombarding energy. Results of the two-source model fit to RHIC experimental data at midrapidity coincide with the results of the one-source thermal model fit, indicating the formation of an extended fireball, which is three times larger than the corresponding core at SPS.Comment: 6 pages, REVTEX

    A CsI(Tl) Scintillating Crystal Detector for the Studies of Low Energy Neutrino Interactions

    Get PDF
    Scintillating crystal detector may offer some potential advantages in the low-energy, low-background experiments. A 500 kg CsI(Tl) detector to be placed near the core of Nuclear Power Station II in Taiwan is being constructed for the studies of electron-neutrino scatterings and other keV-MeV range neutrino interactions. The motivations of this detector approach, the physics to be addressed, the basic experimental design, and the characteristic performance of prototype modules are described. The expected background channels and their experimental handles are discussed.Comment: 34 pages, 11 figures, submitted to Nucl. Instrum. Method
    corecore