613 research outputs found
Impurity state in Haldane gap for S=1 Heisenberg antiferromagnetic chain with bond doping
Using a new impurity density matrix renormalization group scheme, we
establish a reliable picture of how the low lying energy levels of a
Heisenberg antiferromagnetic chain change {\it quantitatively} upon bond
doping. A new impurity state gradually occurs in the Haldane gap as ,
while it appears only if with as . The
system is non-perturbative as . This explains the
appearance of a new state in the Haldane gap in a recent experiment on
YCaBaNiO [J.F. DiTusa, et al., Phys. Rev. Lett. 73 1857(1994)].Comment: 4 pages of uuencoded gzip'd postscrip
Spectral hardness evolution characteristics of tracking Gamma-ray Burst pulses
Employing a sample presented by Kaneko et al. (2006) and Kocevski et al.
(2003), we select 42 individual tracking pulses (here we defined tracking as
the cases in which the hardness follows the same pattern as the flux or count
rate time profile) within 36 Gamma-ray Bursts (GRBs) containing 527
time-resolved spectra and investigate the spectral hardness, (where
is the maximum of the spectrum), evolutionary
characteristics. The evolution of these pulses follow soft-to-hard-to-soft (the
phase of soft-to-hard and hard-to-soft are denoted by rise phase and decay
phase, respectively) with time. It is found that the overall characteristics of
of our selected sample are: 1) the evolution in the rise
phase always start on the high state (the values of are always
higher than 50 keV); 2) the spectra of rise phase clearly start at higher
energy (the median of are about 300 keV), whereas the spectra of
decay phase end at much lower energy (the median of are about 200
keV); 3) the spectra of rise phase are harder than that of the decay phase and
the duration of rise phase are much shorter than that of decay phase as well.
In other words, for a complete pulse the initial is higher than the
final and the duration of initial phase (rise phase) are much
shorter than the final phase (decay phase). This results are in good agreement
with the predictions of Lu et al. (2007) and current popular view on the
production of GRBs. We argue that the spectral evolution of tracking pulses may
be relate to both of kinematic and dynamic process even if we currently can not
provide further evidences to distinguish which one is dominant. Moreover, our
statistical results give some witnesses to constrain the current GRB model.Comment: 32 pages, 26 figures, 3 tables, accepted for publication in New
Astronom
Single Atom and Two Atom Ramsey Interferometry with Quantized Fields
Implications of field quantization on Ramsey interferometry are discussed and
general conditions for the occurrence of interference are obtained.
Interferences do not occur if the fields in two Ramsey zones have precise
number of photons. However in this case we show how two atom (like two photon)
interferometry can be used to discern a variety of interference effects as the
two independent Ramsey zones get entangled by the passage of first atom.
Generation of various entangled states like |0,2>+|2,0> are discussed and in
far off resonance case generation of entangled state of two coherent states is
discussed.Comment: 20 pages, 5 figures, revised version. submitted to Phys. Rev.
Polarization quantum properties in type-II Optical Parametric Oscillator below threshold
We study the far field spatial distribution of the quantum fluctuations in
the transverse profile of the output light beam generated by a type II Optical
Parametric Oscillator below threshold, including the effects of transverse
walk-off. We study how quadrature field correlations depend on the
polarization. We find spatial EPR entanglement in quadrature-polarization
components: For the far field points not affected by walk-off there is almost
complete noise suppression in the proper quadratures difference of any
orthogonal polarization components. We show the entanglement of the state of
symmetric intense, or macroscopic, spatial light modes. We also investigate
nonclassical polarization properties in terms of the Stokes operators. We find
perfect correlations in all Stokes parameters measured in opposite far field
points in the direction orthogonal to the walk-off, while locally the field is
unpolarized and we find no polarization squeezing.Comment: 16 pages, 18 figure
Exact soliton solution and inelastic two-soliton collision in spin chain driven by a time-dependent magnetic field
We investigate dynamics of exact N-soliton trains in spin chain driven by a
time-dependent magnetic field by means of an inverse scattering transformation.
The one-soliton solution indicates obviously the spin precession around the
magnetic field and periodic shape-variation induced by the time varying field
as well. In terms of the general soliton solutions N-soliton interaction and
particularly various two-soliton collisions are analyzed. The inelastic
collision by which we mean the soliton shape change before and after collision
appears generally due to the time varying field. We, moreover, show that
complete inelastic collisions can be achieved by adjusting spectrum and field
parameters. This may lead a potential technique of shape control of soliton.Comment: 5 pages, 5 figure
Analysis of particle production in ultra-relativistic heavy ion collisions within a two-source statistical model
The experimental data on hadron yields and ratios in central lead-lead and
gold-gold collisions at 158 AGeV/ (SPS) and AGeV (RHIC),
respectively, are analysed within a two-source statistical model of an ideal
hadron gas. A comparison with the standard thermal model is given. The two
sources, which can reach the chemical and thermal equilibrium separately and
may have different temperatures, particle and strangeness densities, and other
thermodynamic characteristics, represent the expanding system of colliding
heavy ions, where the hot central fireball is embedded in a larger but cooler
fireball. The volume of the central source increases with rising bombarding
energy. Results of the two-source model fit to RHIC experimental data at
midrapidity coincide with the results of the one-source thermal model fit,
indicating the formation of an extended fireball, which is three times larger
than the corresponding core at SPS.Comment: 6 pages, REVTEX
A CsI(Tl) Scintillating Crystal Detector for the Studies of Low Energy Neutrino Interactions
Scintillating crystal detector may offer some potential advantages in the
low-energy, low-background experiments. A 500 kg CsI(Tl) detector to be placed
near the core of Nuclear Power Station II in Taiwan is being constructed for
the studies of electron-neutrino scatterings and other keV-MeV range neutrino
interactions. The motivations of this detector approach, the physics to be
addressed, the basic experimental design, and the characteristic performance of
prototype modules are described. The expected background channels and their
experimental handles are discussed.Comment: 34 pages, 11 figures, submitted to Nucl. Instrum. Method
- …