42 research outputs found

    Disease Trajectories in the Revised Hammersmith Scale in a Cohort of Untreated Patients with Spinal Muscular Atrophy types 2 and 3

    Get PDF
    Background: Spinal muscular atrophy (SMA) is a neuromuscular disorder characterised by progressive motor function decline. Motor function is assessed using several functional outcome measures including the Revised Hammersmith Scale (RHS). Objective: In this study, we present longitudinal trajectories for the RHS in an international cohort of 149 untreated paediatric SMA 2 and 3 patients (across 531 assessments collected between March 2015 and July 2019). Methods: We contextualise these trajectories using both the Hammersmith Functional Motor Scale Expanded (HFMSE) and Revised Upper Limb Module (RULM). At baseline, this cohort included 50% females and 15% of patients had undergone spinal fusion surgery. Patient trajectories were modelled using a natural cubic spline with age, sex, and random effects for each patient. Results: RHS and HFMSE scores show similar trends over time in this cohort not receiving disease modifying therapies. The results confirm the strong correlation between the RHS and RULM previously observed in SMA types 2 and 3a. Scoliosis surgery is associated with a reduction of 3 points in the RHS, 4.5 points in the HFMSE for the SMA 2 population, and a reduction of 11.8 points in the RHS, and 13.4 points in the HFMSE for the SMA 3a populations. When comparing the RHS and RULM, there is a lower correlation in the type 3a\u27s than the type 2 patients. In the SMA 2 population, there is no significant difference between the sexes in either the RHS or HFMSE trajectories. There is no significant difference in the RULM trajectory in the SMA 2 or 3a participants by sex. Conclusions: This study demonstrates that the RHS could be used in conjunction with other functional measures such as the RULM to holistically detect SMA disease progression. This will assist with fully understanding changes that occur with treatments, further defining trajectories and therapy outcomes

    Involvement of the spinal cord in primary mitochondrial disorders : a neuroimaging mimicker of inflammation and ischemia in children

    Get PDF
    CITATION: Alves, C. A. P. F. et al. 2021 . Involvement of the spinal cord in primary mitochondrial disorders : a neuroimaging mimicker of inflammation and ischemia in children. American Journal of Neuroradiology, 42(2):389-396, doi: 10.3174/ajnr.A6910.The original publication is available at: https://pubmed.ncbi.nlm.nih.govBackground and purpose: Little is known about imaging features of spinal cord lesions in mitochondrial disorders. The aim of this research was to assess the frequency, imaging features, and pathogenic variants causing primary mitochondrial disease in children with spinal cord lesions. Materials and methods: This retrospective analysis included patients seen at Children's Hospital of Philadelphia between 2000 and 2019 who had a confirmed diagnosis of a primary (genetic-based) mitochondrial disease and available MR imaging of the spine. The MR imaging included at least both sagittal and axial fast spin-echo T2-weighted images. Spine images were independently reviewed by 2 neuroradiologists. Location and imaging features of spinal cord lesions were correlated and tested using the Fisher exact test. Results: Of 119 children with primary mitochondrial disease in whom MR imaging was available, only 33 of 119 (28%) had available spine imaging for reanalysis. Nineteen of these 33 individuals (58%) had evidence of spinal cord lesions. Two main patterns of spinal cord lesions were identified: group A (12/19; 63%) had white ± gray matter involvement, and group B (7/19; 37%) had isolated gray matter involvement. Group A spinal cord lesions were similar to those seen in patients with neuromyelitis optica spectrum disorder, multiple sclerosis, anti-myelin oligodendrocyte glycoprotein-IgG antibody disease, and leukoencephalopathy with brain stem and spinal cord involvement and lactate elevation. Group B patients had spinal cord findings similar to those that occur with ischemia and viral infections. Significant associations were seen between the pattern of lesions (group A versus group B) and the location of lesions in cervical versus thoracolumbar segments, respectively (P < .01). Conclusions: Spinal cord lesions are frequently observed in children with primary mitochondrial disease and may mimic more common causes such as demyelination and ischemia.Publisher's versio

    Current state and future of pediatric allergology in Europe: A road map

    Get PDF
    The history of pediatric allergology (PA) in Europe is relatively youthful, dating back to 1984, when a small group of pediatricians founded the European Working Group on Pediatric Allergy and Immunology—later giving rise to ESPACI (European Society on Pediatric Allergology and Clinical Immunology). In 1990, the first dedicated journal, Pediatric Allergy and Immunology (PAI), was founded. There are striking differences across Europe, and even within European countries, in relation to the training pathways for doctors seeing children with allergic disease(s). In 2016, the EAACIClemens von Pirquet Foundation (CvP) organized and sponsored a workshop with the European Academy of Allergy and Clinical Immunology (EAACI) Pediatric Section. This collaboration focussed on the future of PA and specifically on education, research, and networking/ advocacy. The delegates representing many countries across Europe have endorsed the concept that optimal care of children with allergic diseases is delivered by pediatricians who have received dedicated training in allergy, or allergists who have received dedicated training in pediatrics. In order to meet the needs of children and families with allergic disease(s), the pediatric allergist is highly encouraged to develop several networks. Our challenge is to reinforce a clear strategic approach to scientific excellence to across our member base and to ensure and enhance the relevance of European pediatric research in allergy. With research opportunities in basic, translational, clinical, and epidemiologic trials, more trainees and trained specialists are needed and it is an exciting time to be a pediatric allergologist

    An ancestral 10-bp repeat expansion in VWA1 causes recessive hereditary motor neuropathy

    Get PDF
    The extracellular matrix comprises a network of macromolecules such as collagens, proteoglycans and glycoproteins. VWA1 (von Willebrand factor A domain containing 1) encodes a component of the extracellular matrix that interacts with perlecan/collagen VI, appears to be involved in stabilizing extracellular matrix structures, and demonstrates high expression levels in tibial nerve. Vwa1-deficient mice manifest with abnormal peripheral nerve structure/function; however, VWA1 variants have not previously been associated with human disease. By interrogating the genome sequences of 74 180 individuals from the 100K Genomes Project in combination with international gene-matching efforts and targeted sequencing, we identified 17 individuals from 15 families with an autosomal-recessive, non-length dependent, hereditary motor neuropathy and rare biallelic variants in VWA1. A single disease-associated allele p.(G25Rfs*74), a 10-bp repeat expansion, was observed in 14/15 families and was homozygous in 10/15. Given an allele frequency in European populations approaching 1/1000, the seven unrelated homozygote individuals ascertained from the 100K Genomes Project represents a substantial enrichment above expected. Haplotype analysis identified a shared 220 kb region suggesting that this founder mutation arose >7000 years ago. A wide age-range of patients (6–83 years) helped delineate the clinical phenotype over time. The commonest disease presentation in the cohort was an early-onset (mean 2.0 ± 1.4 years) non-length-dependent axonal hereditary motor neuropathy, confirmed on electrophysiology, which will have to be differentiated from other predominantly or pure motor neuropathies and neuronopathies. Because of slow disease progression, ambulation was largely preserved. Neurophysiology, muscle histopathology, and muscle MRI findings typically revealed clear neurogenic changes with single isolated cases displaying additional myopathic process. We speculate that a few findings of myopathic changes might be secondary to chronic denervation rather than indicating an additional myopathic disease process. Duplex reverse transcription polymerase chain reaction and immunoblotting using patient fibroblasts revealed that the founder allele results in partial nonsense mediated decay and an absence of detectable protein. CRISPR and morpholino vwa1 modelling in zebrafish demonstrated reductions in motor neuron axonal growth, synaptic formation in the skeletal muscles and locomotive behaviour. In summary, we estimate that biallelic variants in VWA1 may be responsible for up to 1% of unexplained hereditary motor neuropathy cases in Europeans. The detailed clinical characterization provided here will facilitate targeted testing on suitable patient cohorts. This novel disease gene may have previously evaded detection because of high GC content, consequential low coverage and computational difficulties associated with robustly detecting repeat-expansions. Reviewing previously unsolved exomes using lower QC filters may generate further diagnoses

    Epithelial dysregulation in obese severe asthmatics with gastro-oesophageal reflux

    Get PDF

    An ancestral 10-bp repeat expansion in VWA1 causes recessive hereditary motor neuropathy.

    Get PDF
    The extracellular matrix comprises a network of macromolecules such as collagens, proteoglycans and glycoproteins. VWA1 (von Willebrand factor A domain containing 1) encodes a component of the extracellular matrix that interacts with perlecan/collagen VI, appears to be involved in stabilizing extracellular matrix structures, and demonstrates high expression levels in tibial nerve. Vwa1-deficient mice manifest with abnormal peripheral nerve structure/function; however, VWA1 variants have not previously been associated with human disease. By interrogating the genome sequences of 74 180 individuals from the 100K Genomes Project in combination with international gene-matching efforts and targeted sequencing, we identified 17 individuals from 15 families with an autosomal-recessive, non-length dependent, hereditary motor neuropathy and rare biallelic variants in VWA1. A single disease-associated allele p.(G25Rfs*74), a 10-bp repeat expansion, was observed in 14/15 families and was homozygous in 10/15. Given an allele frequency in European populations approaching 1/1000, the seven unrelated homozygote individuals ascertained from the 100K Genomes Project represents a substantial enrichment above expected. Haplotype analysis identified a shared 220 kb region suggesting that this founder mutation arose >7000 years ago. A wide age-range of patients (6-83 years) helped delineate the clinical phenotype over time. The commonest disease presentation in the cohort was an early-onset (mean 2.0 ± 1.4 years) non-length-dependent axonal hereditary motor neuropathy, confirmed on electrophysiology, which will have to be differentiated from other predominantly or pure motor neuropathies and neuronopathies. Because of slow disease progression, ambulation was largely preserved. Neurophysiology, muscle histopathology, and muscle MRI findings typically revealed clear neurogenic changes with single isolated cases displaying additional myopathic process. We speculate that a few findings of myopathic changes might be secondary to chronic denervation rather than indicating an additional myopathic disease process. Duplex reverse transcription polymerase chain reaction and immunoblotting using patient fibroblasts revealed that the founder allele results in partial nonsense mediated decay and an absence of detectable protein. CRISPR and morpholino vwa1 modelling in zebrafish demonstrated reductions in motor neuron axonal growth, synaptic formation in the skeletal muscles and locomotive behaviour. In summary, we estimate that biallelic variants in VWA1 may be responsible for up to 1% of unexplained hereditary motor neuropathy cases in Europeans. The detailed clinical characterization provided here will facilitate targeted testing on suitable patient cohorts. This novel disease gene may have previously evaded detection because of high GC content, consequential low coverage and computational difficulties associated with robustly detecting repeat-expansions. Reviewing previously unsolved exomes using lower QC filters may generate further diagnoses

    Privacy Concerns due to Class Elements in Cloud Environments despite Full Homomorphic Encryption

    Get PDF
    Cloud computing signifies a structural shift towards zero clients and traditionally integrated computational supplies. Because cloud computing does not provide the client with complete governance over the cloud, concerns have surfaced pertaining to data confidentiality, particularly to the misuse or unauthorised access of crucial data by service providers. In response to these concerns, cryptography has been suggested as an apparently effective measure. Recently, fully homomorphic encryption (FHE)—often regarded as the ‘Holy Grail’ of encryption owing to its potency—has been understood to provide a completely functional paradigm with encouraging prospects for supporting privacy in the cloud. However, in this paper, we argue that cryptography alone, even with extremely potent tools such as FHE, cannot offer the level of privacy needed in normal cloud computing environments. Moreover, we explain that a pyramid of natural class elements is present in private cloud programs, and demonstrate that no cryptographic tools can implement rules within classes where data are shared between multiple clients. In conclusion, we stress that to ensure data privacy, consumers of cloud computing services should consider alternative strategies, such as unbreakable hardware, complex trust ecosystems, and distributed computing

    Processing Data in Cloud Environments without the Need for Decryption

    No full text
    Distributed computing is a widely utilized approach for rapidly enhancing an organization’s information technology capabilities while minimizing additional resource requirements. It can efficiently and effectively broaden an organization’s existing IT competencies. In recent years, distributed computing has developed from being a novel and unfamiliar business idea into a rapidly expanding IT business sector. However, as additional organizations and individuals relocate their data and applications into the cloud, significant concerns are starting to develop regarding the infrastructure’s ability to protect sensitive data. Despite the considerable movement toward cloud-based computing, venture clients remain hesitant to relocate their business data into the cloud. Security has proved to be a significant issue, and those concerns continue to diminish the development of distributed computing
    corecore