424 research outputs found

    NMR methods to monitor the enzymatic depolymerization of heparin

    Get PDF
    Heparin and the related glycosaminoglycan, heparan sulfate, are polydisperse linear polysaccharides that mediate numerous biological processes due to their interaction with proteins. Because of the structural complexity and heterogeneity of heparin and heparan sulfate, digestion to produce smaller oligosaccharides is commonly performed prior to separation and analysis. Current techniques used to monitor the extent of heparin depolymerization include UV absorption to follow product formation and size exclusion or strong anion exchange chromatography to monitor the size distribution of the components in the digest solution. In this study, we used 1H nuclear magnetic resonance (NMR) survey spectra and NMR diffusion experiments in conjunction with UV absorption measurements to monitor heparin depolymerization using the enzyme heparinase I. Diffusion NMR does not require the physical separation of the components in the reaction mixture and instead can be used to monitor the reaction solution directly in the NMR tube. Using diffusion NMR, the enzymatic reaction can be stopped at the desired time point, maximizing the abundance of larger oligosaccharides for protein-binding studies or completion of the reaction if the goal of the study is exhaustive digestion for characterization of the disaccharide composition. In this study, porcine intestinal mucosa heparin was depolymerized using the enzyme heparinase I. The unsaturated bond formed by enzymatic cleavage serves as a UV chromophore that can be used to monitor the progress of the depolymerization and for the detection and quantification of oligosaccharides in subsequent separations. The double bond also introduces a unique multiplet with peaks at 5.973, 5.981, 5.990, and 5.998 ppm in the 1H-NMR spectrum downfield of the anomeric region. This multiplet is produced by the proton of the C-4 double bond of the non-reducing end uronic acid at the cleavage site. Changes in this resonance were used to monitor the progression of the enzymatic digestion and compared to the profile obtained from UV absorbance measurements. In addition, in situ NMR diffusion measurements were explored for their ability to profile the different-sized components generated over the course of the digestion

    Determinants of Glycan Receptor Specificity of H2N2 Influenza A Virus Hemagglutinin

    Get PDF
    The H2N2 subtype of influenza A virus was responsible for the Asian pandemic of 1957-58. However, unlike other subtypes that have caused pandemics such as H1N1 and H3N2, which continue to circulate among humans, H2N2 stopped circulating in the human population in 1968. Strains of H2 subtype still continue to circulate in birds and occasionally pigs and could be reintroduced into the human population through antigenic drift or shift. Such an event is a potential global health concern because of the waning population immunity to H2 hemagglutinin (HA). The first step in such a cross-species transmission and human adaptation of influenza A virus is the ability for its surface glycoprotein HA to bind to glycan receptors expressed in the human upper respiratory epithelia. Recent structural and biochemical studies have focused on understanding the glycan receptor binding specificity of the 1957-58 pandemic H2N2 HA. However, there has been considerable HA sequence divergence in the recent avian-adapted H2 strains from the pandemic H2N2 strain. Using a combination of structural modeling, quantitative glycan binding and human respiratory tissue binding methods, we systematically identify mutations in the HA from a recent avian-adapted H2N2 strain (A/Chicken/PA/2004) that make its quantitative glycan receptor binding affinity (defined using an apparent binding constant) comparable to that of a prototypic pandemic H2N2 (A/Albany/6/58) HA.National Institute of General Medical Sciences (U.S.) (GM57073)National Institute of General Medical Sciences (U.S.) (U54 GM62116)Singapore. Agency for Science, Technology and ResearchSingapore-MIT Alliance for Research and Technolog

    Uridine-derived ribose fuels glucose-restricted pancreatic cancer.

    Get PDF
    Pancreatic ductal adenocarcinoma (PDA) is a lethal disease notoriously resistant to therapy1,2. This is mediated in part by a complex tumour microenvironment3, low vascularity4, and metabolic aberrations5,6. Although altered metabolism drives tumour progression, the spectrum of metabolites used as nutrients by PDA remains largely unknown. Here we identified uridine as a fuel for PDA in glucose-deprived conditions by assessing how more than 175 metabolites impacted metabolic activity in 21 pancreatic cell lines under nutrient restriction. Uridine utilization strongly correlated with the expression of uridine phosphorylase 1 (UPP1), which we demonstrate liberates uridine-derived ribose to fuel central carbon metabolism and thereby support redox balance, survival and proliferation in glucose-restricted PDA cells. In PDA, UPP1 is regulated by KRAS-MAPK signalling and is augmented by nutrient restriction. Consistently, tumours expressed high UPP1 compared with non-tumoural tissues, and UPP1 expression correlated with poor survival in cohorts of patients with PDA. Uridine is available in the tumour microenvironment, and we demonstrated that uridine-derived ribose is actively catabolized in tumours. Finally, UPP1 deletion restricted the ability of PDA cells to use uridine and blunted tumour growth in immunocompetent mouse models. Our data identify uridine utilization as an important compensatory metabolic process in nutrient-deprived PDA cells, suggesting a novel metabolic axis for PDA therapy

    Quantitative Description of Glycan-Receptor Binding of Influenza A Virus H7 Hemagglutinin

    Get PDF
    In the context of recently emerged novel influenza strains through reassortment, avian influenza subtypes such as H5N1, H7N7, H7N2, H7N3 and H9N2 pose a constant threat in terms of their adaptation to the human host. Among these subtypes, it was recently demonstrated that mutations in H5 and H9 hemagglutinin (HA) in the context of lab-generated reassorted viruses conferred aerosol transmissibility in ferrets (a property shared by human adapted viruses). We previously demonstrated that the quantitative binding affinity of HA to α2→6 sialylated glycans (human receptors) is one of the important factors governing human adaptation of HA. Although the H7 subtype has infected humans causing varied clinical outcomes from mild conjunctivitis to severe respiratory illnesses, it is not clear where the HA of these subtypes stand in regard to human adaptation since its binding affinity to glycan receptors has not yet been quantified. In this study, we have quantitatively characterized the glycan receptor-binding specificity of HAs from representative strains of Eurasian (H7N7) and North American (H7N2) lineages that have caused human infection. Furthermore, we have demonstrated for the first time that two specific mutations; Gln226→Leu and Gly228→Ser in glycan receptor-binding site of H7 HA substantially increase its binding affinity to human receptor. Our findings contribute to a framework for monitoring the evolution of H7 HA to be able to adapt to human host.National Institutes of Health (U.S.) (GM R37 GM057073-13)Singapore-MIT Alliance for Research and Technolog

    An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics

    Get PDF
    For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale. Analysis of clinicopathologic annotations for over 11,000 cancer patients in the TCGA program leads to the generation of TCGA Clinical Data Resource, which provides recommendations of clinical outcome endpoint usage for 33 cancer types

    An analysis of the temperature dependence of force, during steady shortening at different velocities, in (mammalian) fast muscle fibres

    Get PDF
    We examined, over a wide range of temperatures (10–35°C), the isometric tension and tension during ramp shortening at different velocities (0.2–4 L0/s) in tetanized intact fibre bundles from a rat fast (flexor hallucis brevis) muscle; fibre length (L0) was 2.2 mm and sarcomere length ~2.5 μm. During a ramp shortening, the tension change showed an initial inflection of small amplitude (P1), followed by a larger exponential decline towards an approximate steady level; the tension continued to decline slowly afterwards and the approximate steady tension at a given velocity was estimated as the tension (P2) at the point of intersection between two linear slopes, as previously described (Roots et al. 2007). At a given temperature, the tension P2 declined to a lower level and at a faster rate (from an exponential curve fit) as the shortening velocity was increased; the temperature sensitivity of the rate of tension decline during ramp shortening at different velocities was low (Q10 0.9–1.5). The isometric tension and the P2 tension at a given shortening velocity increased with warming so that the relation between tension and (reciprocal) temperature was sigmoidal in both. In isometric muscle, the temperature T0.5 for half-maximal tension was ~10°C, activation enthalpy change (∆H) was ~100 kJ mol−1 and entropy change (∆S) ~350 J mol−1 K−1. In shortening, these were increased with increase of velocity so that at a shortening velocity (~4 L0/s) producing maximal power at 35°C, T0.5 was ~28°C, ∆H was ~200 kJ mol−1 and ∆S ~ 700 J mol−1 K−1; the same trends were seen in the tension data from isotonic release experiments on intact muscle and in ramp shortening experiments on maximally Ca-activated skinned fibres. In general, our findings show that the sigmoidal relation between force and temperature can be extended from isometric to shortening muscle; the implications of the findings are discussed in relation to the crossbridge cycle. The data indicate that the endothermic, entropy driven process that underlies crossbridge force generation in isometric muscle (Zhao and Kawai 1994; Davis, 1998) is even more pronounced in shortening muscle, i.e. when doing external work

    Systematic Computational and Experimental Investigation of Lithium-Ion Transport Mechanisms in Polyester-Based Polymer Electrolytes

    Get PDF
    Understanding the mechanisms of lithium-ion transport in polymers is crucial for the design of polymer electrolytes. We combine modular synthesis, electrochemical characterization, and molecular simulation to investigate lithium-ion transport in a new family of polyester-based polymers and in poly(ethylene oxide) (PEO). Theoretical predictions of glass-transition temperatures and ionic conductivities in the polymers agree well with experimental measurements. Interestingly, both the experiments and simulations indicate that the ionic conductivity of PEO, relative to the polyesters, is far higher than would be expected from its relative glass-transition temperature. The simulations reveal that diffusion of the lithium cations in the polyesters proceeds via a different mechanism than in PEO, and analysis of the distribution of available cation solvation sites in the various polymers provides a novel and intuitive way to explain the experimentally observed ionic conductivities. This work provides a platform for the evaluation and prediction of ionic conductivities in polymer electrolyte materials

    Episodic Occurrence of Favourable Weather Constrains Recovery of a Cold Desert Shrubland After Fire

    Get PDF
    Key to the long-term resilience of dryland ecosystems is the recovery of foundation plant species following disturbance. In ecosystems with high interannual weather variability, understanding the influence of short-term environmental conditions on establishment of foundation species is essential for identifying vulnerable landscapes and developing restoration strategies. We asked how annual environmental conditions affect post-fire establishment of Artemisia tridentata, a shrub species that dominates landscapes across much of the western United States, and evaluated the influence of episodic establishment on population recovery. We collected A. tridentata stem samples from 33 plots in 12 prescribed fire sites that burned 8–11 years before sampling. We determined individual establishment years using annual growth rings. We measured seasonal soil environmental conditions at the study sites and asked if these conditions predicted annual establishment density. We then evaluated whether establishment patterns could be predicted by site-level climate or dominant subspecies. Finally, we tested the effect of the magnitude and frequency of post-fire establishment episodes on long-term population recovery. Annual post-fire recruitment of A. tridentata was driven by the episodic availability of spring soil moisture. Annual establishment was highest with wetter spring soils (relative influence [RI] = 19.4%) and later seasonal dry-down (RI = 11.8%) in the year of establishment. Establishment density declined greatly 4 to 5 years after fire (RI = 17.1%). Post-fire establishment patterns were poorly predicted by site-level mean climate (marginal R2 ≤ 0.18) and dominant subspecies (marginal R2 ≤ 0.43). Population recovery reflected the magnitude, but not the frequency, of early post-fire establishment pulses. Post-fire A. tridentata density and cover (measured 8–11 years after fire) were more strongly related to the magnitude of the largest establishment pulse than to establishment frequency, suggesting that population recovery may occur with a single favourable establishment year. Synthesis and applications. This study demonstrates the importance of episodic periods of favourable weather for long-term plant population recovery following disturbance. Management strategies that increase opportunities for seed availability to coincide with favourable weather conditions, such as retaining unburned patches or repeated seeding treatments, can improve restoration outcomes in high-priority areas

    High transcript levels of vitamin D receptor are correlated with higher mRNA expression of human beta defensins and IL-10 in mucosa of HIV-1-exposed seronegative individuals

    Get PDF
    RESUMEN: La vitamina D (VitD) es un inmunomodulador endógena que podría proteger de la infección por VIH-1 la reducción de la activación inmune y la inducción de la expresión de VIH-1 anti-péptidos. Para establecer una correlación entre VitD y resistencia natural a la infección VIH-1, un estudio de casos y controles utilizando sangre y mucosa muestras de 58 VIH-1 expuesto, pero seronegativos (HESN) individuos , 43 VIH-1 seropositivos (SP) y 59 no controles sanos -exposed (HCS) se llevó a cabo. La concentración VitD en el plasma se determinó por ELISA, y de ARNm de unidades relativas (RU) de VDR, IL-10 , TGF-β, TNF-α e IL-1β en las células mononucleares de sangre periférica (PBMCs), oral y genital mucosa se cuantificó por QRT-PCR. mRNA niveles de humana beta -defensin (HBD) -2 y -3 se informó anteriormente y utilizados para correlaciones. Significativamente más altos niveles de VitD se encontraron en plasma, así como mayor mRNA RU de VDR en PBMCs, y en genital mucosa de HESN en comparación con HC. Además, superior mRNA RU de TNF-α, IL-1β y IL-10 , e inferior mRNA RU de TGF-β se encontraron en PBMC de HESNs en comparación con HC. También se observó mayor IL-10 mRNA RU en genital mucosa de HESNs en comparación con HC, y los ARNm de los niveles de TNF-α en oral y genital mucosa de SPs estábamos más alta en comparación con HESNs. Por otra parte, las correlaciones positivas entre VDR y la IL-10 mRNA RU en PBMCs y genital mucosa encontrados de HESNs. Por último, HBD-2 y HBD-3 ARNm RU fueron positivamente correlacionadas con VDR mRNA expresión en forma oral mucosa de HESNs. Estos resultados sugieren que los altos niveles de VitD y su receptor están asociadas con resistencia natural a la infección por VIH-1. Sobre regulación de los anti-inflamatoria IL-10 , y la inducción de anti-VIH-1 defensinas en la mucosa podría ser parte de los mecanismos implicados en esta asociación. Sin embargo, se necesitan más estudios para definir las asociaciones causales.ABSTRACT: Vitamin D (VitD) is an endogenous immunomodulator that could protect from HIV-1 infection reducing immune activation and inducing the expression of anti-HIV-1 peptides. To establish a correlation between VitD and natural resistance to HIV-1 infection, a case-control study using blood and mucosa samples of 58 HIV-1-exposed but seronegative (HESN) individuals, 43 HIV-1 seropositives (SPs) and 59 non-exposed healthy controls (HCs) was carried out. The VitD concentration in plasma was determined by ELISA, and mRNA relative units (RU) of VDR, IL-10, TGF-β, TNF-α and IL-1β in peripheral blood mononuclear cells (PBMCs), oral and genital mucosa was quantified by qRT-PCR. mRNA levels of human beta-defensin (HBD) -2 and -3 were previously reported and used for correlations. Significantly higher levels of VitD were found in plasma as well as higher mRNA RU of VDR in PBMCs, and in genital mucosa from HESN compared to HCs. In addition, higher mRNA RU of TNF-α, IL-1β and IL-10, and lower mRNA RU of TGF-β were found in PBMC from HESNs compared to HCs. We also observed higher IL-10 mRNA RU in genital mucosa of HESNs compared to HCs, and the mRNA levels of TNF-α in oral and genital mucosa of SPs were higher compared to HESNs. Furthermore, positive correlations between VDR and IL-10 mRNA RU in PBMCs and genital mucosa of HESNs were found. Finally, HBD-2 and HBD-3 mRNA RU were positively correlated with VDR mRNA expression in oral mucosa from HESNs. These results suggest that high levels of VitD and its receptor are associated with natural resistance to HIV-1 infection. Up-regulation of the anti-inflammatory IL-10, and the induction of anti-HIV-1 defensins in mucosa might be part of the mechanisms involved in this association. However, further studies are required to define causal associations
    corecore