46 research outputs found

    DDX5 plays essential transcriptional and post-transcriptional roles in the maintenance and function of spermatogonia

    Get PDF
    Mammalian spermatogenesis is sustained by mitotic germ cells with self-renewal potential known as undifferentiated spermatogonia. Maintenance of undifferentiated spermatogonia and spermatogenesis is dependent on tightly co-ordinated transcriptional and post-transcriptional mechanisms. The RNA helicase DDX5 is expressed by spermatogonia but roles in spermatogenesis are unexplored. Using an inducible knockout mouse model, we characterise an essential role for DDX5 in spermatogonial maintenance and show that Ddx5 is indispensable for male fertility. We demonstrate that DDX5 regulates appropriate splicing of key genes necessary for spermatogenesis. Moreover, DDX5 regulates expression of cell cycle genes in undifferentiated spermatogonia post-transcriptionally and is required for cell proliferation and survival. DDX5 can also act as a transcriptional co-activator and we demonstrate that DDX5 interacts with PLZF, a transcription factor required for germline maintenance, to co-regulate select target genes. Combined, our data reveal a critical multifunctional role for DDX5 in regulating gene expression programmes and activity of undifferentiated spermatogonia

    Changing climate both increases and decreases European river floods

    Get PDF
    Climate change has led to concerns about increasing river floods resulting from the greater water-holding capacity of a warmer atmosphere. These concerns are reinforced by evidence of increasing economic losses associated with flooding in many parts of the world, including Europe. Any changes in river floods would have lasting implications for the design of flood protection measures and flood risk zoning. However, existing studies have been unable to identify a consistent continental-scale climatic-change signal in flood discharge observations in Europe, because of the limited spatial coverage and number of hydrometric stations. Here we demonstrate clear regional patterns of both increases and decreases in observed river flood discharges in the past five decades in Europe, which are manifestations of a changing climate. Our results—arising from the most complete database of European flooding so far—suggest that: increasing autumn and winter rainfall has resulted in increasing floods in northwestern Europe; decreasing precipitation and increasing evaporation have led to decreasing floods in medium and large catchments in southern Europe; and decreasing snow cover and snowmelt, resulting from warmer temperatures, have led to decreasing floods in eastern Europe. Regional flood discharge trends in Europe range from an increase of about 11 per cent per decade to a decrease of 23 per cent. Notwithstanding the spatial and temporal heterogeneity of the observational record, the flood changes identified here are broadly consistent with climate model projections for the next century, suggesting that climate-driven changes are already happening and supporting calls for the consideration of climate change in flood risk management

    A comparison of greenhouse gas emissions from inputs into farm enterprises in Southeast Queensland, Australia

    Get PDF
    One of the assumptions underlying efforts to convert cropping land, especially marginal crop land, to plantations is that there will be a net reduction in greenhouse gas emissions, with a gas 'sink' replacing a high energy system in which the breakdown of biomass is routinely accelerated to prepare for new crops. This research, based on case studies in Kingaroy in south-east Queensland, compares the amount of greenhouse gas (GHGs) emissions from a peanut/maize crop rotation, a pasture system for beef production and a spotted gum (Corymbia citriodora) timber plantation. Three production inputs, fuel, farm machinery and agrochemicals (fertilizer, pesticides and herbicides) are considered. The study extends beyond the farm gate to include packing and transportation and the time period is 30 years. The results suggest that replacing the crops with plantations would indeed reduce emissions but that a pasture system would have even lower net emissions. These findings cast some doubt on the case for farm forestry as a relatively effective means of ameliorating greenhouse gas emissions

    Climate change, water security and the need for integrated policy development: the case of on-farm infrastructure investment in the Australian irrigation sector

    Get PDF
    The Australian Government is currently addressing the challenge of increasing water scarcity through significant on-farm infrastructure investment to facilitate the adoption of new water-efficient pressurized irrigation systems. However, it is highly likely that conversion to these systems will increase on-farm energy consumption and greenhouse gas (GHG) emissions, suggesting potential conflicts in terms of mitigation and adaptation policies. This study explored the trade-offs associated with the adoption of more water efficient but energy-intensive irrigation technologies by developing an integrated assessment framework. Integrated analysis of five case studies revealed trade-offs between water security and environmental security when conversion to pressurized irrigation systems was evaluated in terms of fuel and energy-related emissions, except in cases where older hand-shift sprinkler irrigation systems were replaced. These results suggest that priority should be given, in implementing on-farm infrastructure investment policy, to replacing inefficient and energy-intensive sprinkler irrigation systems such as hand-shift and roll-line. The results indicated that associated changes in the use of agricultural machinery and agrochemicals may also be important. The findings of this study support the use of an integrated approach to avoid possible conflicts in designing national climate change mitigation and adaptation policies, both of which are being developed in Australia

    Analyzing cropping systems

    No full text
    Harvested from the University of Missouri Extension website."In tight financial times, businesses often try to reduce spending and improve their profits. Many farmers are currently operating their businesses under such conditions. Wise management decisions can improve profits in farming while reducing cash flow needs."--First page.D.D. Buchholz, L.E. Anderson, Z.R. Helsel, Harry C. Minor, C.J. Johannsen, J.H. Scott, Howell N. Wheaton (Department of Agronomy
    corecore