68 research outputs found

    Short Term Topological Changes of Coronal Holes Associated with Prominence Eruptions and Subsequent CMEs

    Full text link
    We study the short--term topological changes of equatorial and polar coronal hole (CH) boundaries, such as a variation of their area and disintegration, associated to reconnection with nearby (within 15^\circ distance) quiescent prominence magnetic fields leading to eruptions and subsequent Coronal Mass Ejections (CMEs). The examples presented here correspond to the recent solar minimum years 2008 and 2009. We consider a temporal window of one day between the CH topological changes and the start and end times of prominence eruptions and onset of CMEs. To establish this association we took into account observational conditions related to the instability of prominence/filaments, the occurrence of a CME, as well as the subsequent evolution after the CME. We found an association between short--term local topological changes in CH boundaries and the formation/disappearance of bright points near them, as well as, between short--term topological changes within the whole CH and eruptions of nearby quiescent prominences followed by the appearance of one or more CMEs.Comment: 15 pages, 11 figures; Journal Advances Space Research (2012

    The heating of filaments as a disappearance process

    Get PDF
    The sudden disappearance of filaments, commonly called Disparition Brusque (DB) is of two types: (1) the well known ejection of cool prominence material in the corona, i.e., a dynamic process (BDd) and (2) the heating of the prominence plasma. When the hydrogen of the filament becomes ionised, then the filament start to be visible in EUV lines keeping the same shape and position as the cool one. This process which is a thermic disapperence was named DB thermic (DBt). Successive disappearances and condensations of a quiescent filament from 13 to 17 of June 1973 was studied. This observation was provided by two instruments on Skylab ATM satellite. These observations of disappearances and condensations are discussed

    Soft X-ray analysis of a loop flare on the Sun

    Get PDF
    We present the results of an analysis of soft X-ray images for a solar flare which occurred on 1992 July 11. This flare, as seen in Yohkoh Soft X-ray Telescope (SXT) images was of comparatively simple geometry, consisting of two bright footpoints early in the flare with a bright loop seen later in the flare. We examine how closely this flare compares with the supposed paradigm of a confined simple-loop flare. Closer examination of the SXT images reveals that the flare structure consisted of at least two adjacent loops, one much fainter than the other. We examine the brighter of the two soft X-ray loops. The SXT images reveal an apparent slow, northward motion of this loop (roughly transverse to its major axis). Examination of derived emission measure and temperature images also indicate an apparent northward motion. In addition, we find an increase in the cross-sectional width at the top of the loop with time. Emission measure maps derived from the SXT images also indicates an apparent broadening of the loop-top region. We infer that the apparent northward motion and the apparent broadening of the soft X-ray emission can be explained in a reconnection scenario where successive magnetic field structures do not lie in a plane but are tilted to the south of the line of sight but with successively brightening loops oriented at less tilted angles. Halpha images for this flare reveal an evolution from a few brilliant points to a short two- ribbon-like appearance. Comparison of the SXT images with the Halpha images shows that the Halpha patches are aligned with the footpoints of the soft X-ray loops, suggesting the presence of a small arcade structure. There is no clear evidence for an eruptive signature in our observations nor in reports from other observations. The lack of an eruptive signature could suggest that the flare may have been a confined simple-loop flare, but this is not compelling due to a gap in the coronal observations prior to and early in the event. Analysis of our observations indicate that the flare exhibited characteristics suggesting that it may be better understood as a mini-arcade flare. These results casts doubt on the validity of the supposed paradigm of a confined simple-loop flare, at least for this flare. They indicate that even an apparently simple-loop flare may be considered to be a variety of arcade flare. We also find an effect which, to our knowledge, has not been reported before: the hot flaring regions later become cooler than the surrounding quiescent corona. That is, the flare loops do not evolve into bright active region loops, but into cooler loops. This may indicate an increase in the efficiency of the cooling mechanism or a transformed equilibrium state within the flaring loops

    Limb Spicules from the Ground and from Space

    Get PDF
    We amassed statistics for quiet-sun chromosphere spicules at the limb using ground-based observations from the Swedish 1-m Solar Telescope on La Palma and simultaneously from NASA's Transition Region and Coronal Explorer (TRACE) spacecraft. The observations were obtained in July 2006. With the 0.2 arcsecond resolution obtained after maximizing the ground-based resolution with the Multi-Object Multi-Frame Blind Deconvolution (MOMFBD) program, we obtained specific statistics for sizes and motions of over two dozen individual spicules, based on movies compiled at 50-second cadence for the series of five wavelengths observed in a very narrow band at H-alpha, on-band and in the red and blue wings at 0.035 nm and 0.070 nm (10 s at each wavelength) using the SOUP filter, and had simultaneous observations in the 160 nm EUV continuum from TRACE. The MOMFBD restoration also automatically aligned the images, facilitating the making of Dopplergrams at each off-band pair. We studied 40 H-alpha spicules, and 14 EUV spicules that overlapped H-alpha spicules; we found that their dynamical and morphological properties fit into the framework of several previous studies. From a preliminary comparison with spicule theories, our observations are consistent with a reconnection mechanism for spicule generation, and with UV spicules being a sheath region surrounding the H-alpha spicules

    Coronal Magnetic Field Evolution from 1996 to 2012: Continuous Non-potential Simulations

    Get PDF
    Coupled flux transport and magneto-frictional simulations are extended to simulate the continuous magnetic-field evolution in the global solar corona for over 15 years, from the start of Solar Cycle 23 in 1996. By simplifying the dynamics, our model follows the build-up and transport of electric currents and free magnetic energy in the corona, offering an insight into the magnetic structure and topology that extrapolation-based models cannot. To enable these extended simulations, we have implemented a more efficient numerical grid, and have carefully calibrated the surface flux-transport model to reproduce the observed large-scale photospheric radial magnetic field, using emerging active regions determined from observed line-of-sight magnetograms. This calibration is described in some detail. In agreement with previous authors, we find that the standard flux-transport model is insufficient to simultaneously reproduce the observed polar fields and butterfly diagram during Cycle 23, and that additional effects must be added. For the best-fit model, we use automated techniques to detect the latitude–time profile of flux ropes and their ejections over the full solar cycle. Overall, flux ropes are more prevalent outside of active latitudes but those at active latitudes are more frequently ejected. Future possibilities for space-weather prediction with this approach are briefly assessed

    Poster display II clinical general

    Get PDF
    corecore