35 research outputs found

    The expression of TRMT2A, a novel cell cycle regulated protein, identifies a subset of breast cancer patients with HER2 over-expression that are at an increased risk of recurrence

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Over-expression of <it>HER2 </it>in a subset of breast cancers (<it>HER2</it>+) is associated with high histological grade and aggressive clinical course. Despite these distinctive features, the differences in response of <it>HER2</it>+ patients to both adjuvant cytotoxic chemotherapy and targeted therapy (e.g. trastuzumab) suggests that unrecognized biologic and clinical diversity is confounding treatment strategies. Furthermore, the small but established risk of cardiac morbidity with trastuzumab therapy compels efforts towards the identification of biomarkers that might help stratify patients.</p> <p>Methods</p> <p>A single institution tissue array cohort assembled at the Clearview Cancer Institute of Huntsville (CCIH) was screened by immunohistochemistry staining using a large number of novel and commercially available antibodies to identify those with a univariate association with clinical outcome in <it>HER2</it>+ patients. Staining with antibody directed at TRMT2A was found to be strongly associated with outcome in <it>HER2</it>+ patients. This association with outcome was tested in two independent validation cohorts; an existing staining dataset derived from tissue assembled at the Cleveland Clinic Foundation (CCF), and in a new retrospective study performed by staining archived paraffin blocks available at the Roswell Park Cancer Institute (RPCI).</p> <p>Results</p> <p>TRMT2A staining showed a strong correlation with likelihood of recurrence at five years in 67 <it>HER2</it>+ patients from the CCIH discovery cohort (HR 7.0; 95% CI 2.4 to 20.1, p < 0.0004). This association with outcome was confirmed using 75 <it>HER2</it>+ patients from the CCF cohort (HR 3.6; 95% CI 1.3 to 10.2, p < 0.02) and 64 patients from the RPCI cohort (HR 3.4; 95% CI 1.3-8.9, p < 0.02). In bivariable analysis the association with outcome was independent of grade, tumor size, nodal status and the administration of conventional adjuvant chemotherapy in the CCIH and RPCI cohorts.</p> <p>Conclusions</p> <p>Studies from three independent single institution cohorts support TRMT2A protein expression as a biomarker of increased risk of recurrence in <it>HER2+ </it>breast cancer patients. These results suggest that TRMT2A expression should be further studied in the clinical trial setting to explore its predictive power for response to adjuvant cytotoxic chemotherapy in combination with <it>HER2 </it>targeted therapy.</p

    Poster display II clinical general

    Get PDF

    Effects of alirocumab on types of myocardial infarction: insights from the ODYSSEY OUTCOMES trial

    Get PDF
    Aims  The third Universal Definition of Myocardial Infarction (MI) Task Force classified MIs into five types: Type 1, spontaneous; Type 2, related to oxygen supply/demand imbalance; Type 3, fatal without ascertainment of cardiac biomarkers; Type 4, related to percutaneous coronary intervention; and Type 5, related to coronary artery bypass surgery. Low-density lipoprotein cholesterol (LDL-C) reduction with statins and proprotein convertase subtilisin–kexin Type 9 (PCSK9) inhibitors reduces risk of MI, but less is known about effects on types of MI. ODYSSEY OUTCOMES compared the PCSK9 inhibitor alirocumab with placebo in 18 924 patients with recent acute coronary syndrome (ACS) and elevated LDL-C (≄1.8 mmol/L) despite intensive statin therapy. In a pre-specified analysis, we assessed the effects of alirocumab on types of MI. Methods and results  Median follow-up was 2.8 years. Myocardial infarction types were prospectively adjudicated and classified. Of 1860 total MIs, 1223 (65.8%) were adjudicated as Type 1, 386 (20.8%) as Type 2, and 244 (13.1%) as Type 4. Few events were Type 3 (n = 2) or Type 5 (n = 5). Alirocumab reduced first MIs [hazard ratio (HR) 0.85, 95% confidence interval (CI) 0.77–0.95; P = 0.003], with reductions in both Type 1 (HR 0.87, 95% CI 0.77–0.99; P = 0.032) and Type 2 (0.77, 0.61–0.97; P = 0.025), but not Type 4 MI. Conclusion  After ACS, alirocumab added to intensive statin therapy favourably impacted on Type 1 and 2 MIs. The data indicate for the first time that a lipid-lowering therapy can attenuate the risk of Type 2 MI. Low-density lipoprotein cholesterol reduction below levels achievable with statins is an effective preventive strategy for both MI types.For complete list of authors see http://dx.doi.org/10.1093/eurheartj/ehz299</p

    Non-Standard Errors

    Get PDF
    In statistics, samples are drawn from a population in a data-generating process (DGP). Standard errors measure the uncertainty in estimates of population parameters. In science, evidence is generated to test hypotheses in an evidence-generating process (EGP). We claim that EGP variation across researchers adds uncertainty: Non-standard errors (NSEs). We study NSEs by letting 164 teams test the same hypotheses on the same data. NSEs turn out to be sizable, but smaller for better reproducible or higher rated research. Adding peer-review stages reduces NSEs. We further find that this type of uncertainty is underestimated by participants

    Effect of alirocumab on mortality after acute coronary syndromes. An analysis of the ODYSSEY OUTCOMES randomized clinical trial

    Get PDF
    Background: Previous trials of PCSK9 (proprotein convertase subtilisin-kexin type 9) inhibitors demonstrated reductions in major adverse cardiovascular events, but not death. We assessed the effects of alirocumab on death after index acute coronary syndrome. Methods: ODYSSEY OUTCOMES (Evaluation of Cardiovascular Outcomes After an Acute Coronary Syndrome During Treatment With Alirocumab) was a double-blind, randomized comparison of alirocumab or placebo in 18 924 patients who had an ACS 1 to 12 months previously and elevated atherogenic lipoproteins despite intensive statin therapy. Alirocumab dose was blindly titrated to target achieved low-density lipoprotein cholesterol (LDL-C) between 25 and 50 mg/dL. We examined the effects of treatment on all-cause death and its components, cardiovascular and noncardiovascular death, with log-rank testing. Joint semiparametric models tested associations between nonfatal cardiovascular events and cardiovascular or noncardiovascular death. Results: Median follow-up was 2.8 years. Death occurred in 334 (3.5%) and 392 (4.1%) patients, respectively, in the alirocumab and placebo groups (hazard ratio [HR], 0.85; 95% CI, 0.73 to 0.98; P=0.03, nominal P value). This resulted from nonsignificantly fewer cardiovascular (240 [2.5%] vs 271 [2.9%]; HR, 0.88; 95% CI, 0.74 to 1.05; P=0.15) and noncardiovascular (94 [1.0%] vs 121 [1.3%]; HR, 0.77; 95% CI, 0.59 to 1.01; P=0.06) deaths with alirocumab. In a prespecified analysis of 8242 patients eligible for ≄3 years follow-up, alirocumab reduced death (HR, 0.78; 95% CI, 0.65 to 0.94; P=0.01). Patients with nonfatal cardiovascular events were at increased risk for cardiovascular and noncardiovascular deaths (P<0.0001 for the associations). Alirocumab reduced total nonfatal cardiovascular events (P<0.001) and thereby may have attenuated the number of cardiovascular and noncardiovascular deaths. A post hoc analysis found that, compared to patients with lower LDL-C, patients with baseline LDL-C ≄100 mg/dL (2.59 mmol/L) had a greater absolute risk of death and a larger mortality benefit from alirocumab (HR, 0.71; 95% CI, 0.56 to 0.90; Pinteraction=0.007). In the alirocumab group, all-cause death declined wit h achieved LDL-C at 4 months of treatment, to a level of approximately 30 mg/dL (adjusted P=0.017 for linear trend). Conclusions: Alirocumab added to intensive statin therapy has the potential to reduce death after acute coronary syndrome, particularly if treatment is maintained for ≄3 years, if baseline LDL-C is ≄100 mg/dL, or if achieved LDL-C is low. Clinical Trial Registration: URL: https://www.clinicaltrials.gov. Unique identifier: NCT01663402
    corecore