798 research outputs found

    Numerical methods for low-dose EDS tomography

    Get PDF
    Energy-dispersive X-ray spectroscopic (EDS) tomography is a powerful three-dimensional (3D) imaging technique for characterizing the chemical composition and structure of nanomaterials. However, the accuracy and resolution are typically hampered by the limited number of tilt images that can be measured and the low signal-to-noise ratios (SNRs) of the energy-resolved tilt images. Various sophisticated reconstruction algorithms have been proposed for specific types of samples and imaging conditions, yet deciding on which algorithm to use for each new case remains a complex problem. In this paper, we propose to tailor the reconstruction algorithm for EDS tomography in three aspects: (1) model the reconstruction problem based on an accurate assumption of the data statistics; (2) regularize the reconstruction to incorporate prior knowledge; (3) apply bimodal tomography to augment the EDS data with a high-SNR modality. Methods for the three aspects can be combined in one reconstruction procedure as three modules. Therefore, a reconstruction algorithm can be constructed as a ‘recipe’. We also provide guidelines for preparing the recipe based on conditions and assumptions for the data. We investigate the effects of different recipes on both simulated data and real experimental data. The results show that the preferred recipe depends on both acquisition conditions and sample properties, and that the image quality can be enhanced using a properly tailored recipe

    EDS tomographic reconstruction regularized by total nuclear variation joined with HAADF-STEM tomography

    Get PDF
    Energy-dispersive X-ray spectroscopy (EDS) tomography is an advanced technique to characterize compositional information for nanostructures in three dimensions (3D). However, the application is hindered by the poor image quality caused by the low signal-to-noise ratios and the limited number of tilts, which are fundamentally limited by the insufficient number of X-ray counts. In this paper, we explore how to make accurate EDS reconstructions from such data. We propose to augment EDS tomography by joining with it a more accurate high-angle annular dark-field STEM (HAADF-STEM) tomographic reconstruction, for which usually a larger number of tilt images are feasible. This augmentation is realized through total nuclear variation (TNV) regularization, which encourages the joint EDS and HAADF reconstructions to have not only sparse gradients but also common edges and parallel (or antiparallel) gradients. Our experiments show that reconstruction images are more accurate compared to the non-regularized and the total variation regularized reconstructions, even when the number of tilts is small or the X-ray counts are low

    Entanglement and co-tunneling of two equivalent protons in hydrogen bond pairs

    Get PDF
    The following article appeared in The Journal of Chemical Physics 148, 102307 (2018) and may be found at https://doi.org/10.1063/1.5000681A theoretical study is reported of a system of two identical symmetric hydrogen bonds, weakly coupled such that the two mobile protons can move either separately (stepwise) or together (concerted). It is modeled by two equivalent quartic potentials interacting through dipolar and quadrupolar coupling terms. The tunneling Hamiltonian has two imaginary modes (reaction coordinates) and a potential with a single maximum that may turn into a saddle-point of second order and two sets of (inequivalent) minima. Diagonalization is achieved via a modified Jacobi-Davidson algorithm. From this Hamiltonian the mechanism of proton transfer is derived. To find out whether the two protons move stepwise or concerted, a new tool is introduced, based on the distribution of the probability flux in the dividing plane of the transfer mode. While stepwise transfer dominates for very weak coupling, it is found that concerted transfer (co-tunneling) always occurs, even when the coupling vanishes since the symmetry of the Hamiltonian imposes permanent entanglement on the motions of the two protons. We quantify this entanglement and show that, for a wide range of parameters of interest, the lowest pair of states of the Hamiltonian represents a perfect example of highly entangled quantum states in continuous variables. The method is applied to the molecule porphycene for which the observed tunneling splitting is calculated in satisfactory agreement with experiment, and the mechanism of double-proton tunneling is found to be predominantly concerted. We show that, under normal conditions, when they are in the ground state, the two porphycene protons are highly entangled, which may have interesting applications. The treatment also identifies the conditions under which such a system can be handled by conventional one-instanton techniquesFinancial support from Ministerio de Economia y Competitividad of Spain (Research Grant No. CTQ2014-58617-R), the Consellería de Cultura, Educación e Ordenación Universitaria (Centro singular de investigacion de Galicia acreditación 2016-2019, No. ED431G/09), and the European Regional Development Fund (ERDF) is gratefully acknowledgedS

    The function of visual search and memory in sequential looking tasks

    Get PDF
    Eye and head movements were recorded as unrestrained subjects tapped or only looked at nearby targets. Scanning patterns were the same in both tasks: subjects looked at each target before tapping it; visual search had similar speeds and gaze-shift accuracies. Looking however, took longer and, unlike tapping, benefitted little from practice. Looking speeded up more than tapping when memory load was reduced: memory was more efficient during tapping. Conclusion: eye movements made when only looking are different from those made when tapping. Visual search functions as a separate process, incorporated into both tasks: it can be used to improve performance when memory load is heavy

    Twinning superlattices in indium phosphide nanowires

    Full text link
    Here, we show that we control the crystal structure of indium phosphide (InP) nanowires by impurity dopants. We have found that zinc decreases the activation barrier for 2D nucleation growth of zinc-blende InP and therefore promotes the InP nanowires to crystallise in the zinc blende, instead of the commonly found wurtzite crystal structure. More importantly, we demonstrate that we can, by controlling the crystal structure, induce twinning superlattices with long-range order in InP nanowires. We can tune the spacing of the superlattices by the wire diameter and the zinc concentration and present a model based on the cross-sectional shape of the zinc-blende InP nanowires to quantitatively explain the formation of the periodic twinning.Comment: 18 pages, 4 figure

    Multiple solutions to a magnetic nonlinear Choquard equation

    Full text link
    We consider the stationary nonlinear magnetic Choquard equation [(-\mathrm{i}\nabla+A(x))^{2}u+V(x)u=(\frac{1}{|x|^{\alpha}}\ast |u|^{p}) |u|^{p-2}u,\quad x\in\mathbb{R}^{N}%] where A A\ is a real valued vector potential, VV is a real valued scalar potential,, N3N\geq3, α(0,N)\alpha\in(0,N) and 2(α/N)<p<(2Nα)/(N2)2-(\alpha/N) <p<(2N-\alpha)/(N-2). \ We assume that both AA and VV are compatible with the action of some group GG of linear isometries of RN\mathbb{R}^{N}. We establish the existence of multiple complex valued solutions to this equation which satisfy the symmetry condition u(gx)=τ(g)u(x)   for allgG,xRN, u(gx)=\tau(g)u(x)\text{\ \ \ for all}g\in G,\text{}x\in\mathbb{R}^{N}, where τ:GS1\tau:G\rightarrow\mathbb{S}^{1} is a given group homomorphism into the unit complex numbers.Comment: To appear on ZAM

    Multicentre reference values for cardiac magnetic resonance imaging derived ventricular size and function for children aged 0-18 years

    Get PDF
    AIMS: Cardiovascular magnetic resonance (CMR) imaging is an important tool in the assessment of paediatric cardiac disease. Reported reference values of ventricular volumes and masses in the paediatric population are based on small cohorts and several methodologic differences between studies exist. We sought to create steady-state free precession (SSFP) CMR reference values for biventricular volumes and mass by combining data of previously published studies and re-analysing these data in a standardized manner. METHODS AND RESULTS: A total of 141 healthy children (68 boys) from three European centres underwent cine-SSFP CMR imaging. Cardiac structures were manually contoured for end-diastolic and end-systolic phases in the short-axis orientation according to current standardized CMR post-processing guidelines. Volumes and masses were derived from these contours. Age-related reference curves were constructed using the lambda mu sigma method. Median age was 12.7 years (range 0.6-18.5). We report biventricular volumes and masses, unindexed and indexed for body surface area, stratified by age groups. In general, boys had approximately 15% higher biventricular volumes and masses compared with girls. Only in children aged <6 years old no gender differences could be observed. Left ventricle ejection fraction was slightly higher in boys in this study population (median 67% vs. 65%, P = 0.016). Age-related reference curves showed non-linear relations between age and cardiac parameters. CONCLUSION: We report volumetric SSFP CMR imaging reference values for children aged 0-18 years old in a relatively large multi-centre cohort. These references can be used in the follow-up of paedi

    Positive Least Energy Solutions and Phase Separation for Coupled Schrodinger Equations with Critical Exponent: Higher Dimensional Case

    Full text link
    We study the following nonlinear Schr\"{o}dinger system which is related to Bose-Einstein condensate: {displaymath} {cases}-\Delta u +\la_1 u = \mu_1 u^{2^\ast-1}+\beta u^{\frac{2^\ast}{2}-1}v^{\frac{2^\ast}{2}}, \quad x\in \Omega, -\Delta v +\la_2 v =\mu_2 v^{2^\ast-1}+\beta v^{\frac{2^\ast}{2}-1} u^{\frac{2^\ast}{2}}, \quad x\in \om, u\ge 0, v\ge 0 \,\,\hbox{in \om},\quad u=v=0 \,\,\hbox{on \partial\om}.{cases}{displaymath} Here \om\subset \R^N is a smooth bounded domain, 2:=2NN22^\ast:=\frac{2N}{N-2} is the Sobolev critical exponent, -\la_1(\om)0 and β0\beta\neq 0, where \lambda_1(\om) is the first eigenvalue of Δ-\Delta with the Dirichlet boundary condition. When \bb=0, this is just the well-known Brezis-Nirenberg problem. The special case N=4 was studied by the authors in (Arch. Ration. Mech. Anal. 205: 515-551, 2012). In this paper we consider {\it the higher dimensional case N5N\ge 5}. It is interesting that we can prove the existence of a positive least energy solution (u_\bb, v_\bb) {\it for any β0\beta\neq 0} (which can not hold in the special case N=4). We also study the limit behavior of (u_\bb, v_\bb) as β\beta\to -\infty and phase separation is expected. In particular, u_\bb-v_\bb will converge to {\it sign-changing solutions} of the Brezis-Nirenberg problem, provided N6N\ge 6. In case \la_1=\la_2, the classification of the least energy solutions is also studied. It turns out that some quite different phenomena appear comparing to the special case N=4.Comment: 48 pages. This is a revised version of arXiv:1209.2522v1 [math.AP

    Self-assembly of Microcapsules via Colloidal Bond Hybridization and Anisotropy

    Full text link
    Particles with directional interactions are promising building blocks for new functional materials and may serve as models for biological structures. Mutually attractive nanoparticles that are deformable due to flexible surface groups, for example, may spontaneously order themselves into strings, sheets and large vesicles. Furthermore, anisotropic colloids with attractive patches can self-assemble into open lattices and colloidal equivalents of molecules and micelles. However, model systems that combine mutual attraction, anisotropy, and deformability have---to the best of our knowledge---not been realized. Here, we synthesize colloidal particles that combine these three characteristics and obtain self-assembled microcapsules. We propose that mutual attraction and deformability induce directional interactions via colloidal bond hybridization. Our particles contain both mutually attractive and repulsive surface groups that are flexible. Analogous to the simplest chemical bond, where two isotropic orbitals hybridize into the molecular orbital of H2, these flexible groups redistribute upon binding. Via colloidal bond hybridization, isotropic spheres self-assemble into planar monolayers, while anisotropic snowman-like particles self-assemble into hollow monolayer microcapsules. A modest change of the building blocks thus results in a significant leap in the complexity of the self-assembled structures. In other words, these relatively simple building blocks self-assemble into dramatically more complex structures than similar particles that are isotropic or non-deformable

    Multi-Target Prediction: A Unifying View on Problems and Methods

    Full text link
    Multi-target prediction (MTP) is concerned with the simultaneous prediction of multiple target variables of diverse type. Due to its enormous application potential, it has developed into an active and rapidly expanding research field that combines several subfields of machine learning, including multivariate regression, multi-label classification, multi-task learning, dyadic prediction, zero-shot learning, network inference, and matrix completion. In this paper, we present a unifying view on MTP problems and methods. First, we formally discuss commonalities and differences between existing MTP problems. To this end, we introduce a general framework that covers the above subfields as special cases. As a second contribution, we provide a structured overview of MTP methods. This is accomplished by identifying a number of key properties, which distinguish such methods and determine their suitability for different types of problems. Finally, we also discuss a few challenges for future research
    corecore