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A theoretical study is reported of a system of two identical symmetric hydrogen bonds, weakly cou-
pled such that the two mobile protons can move either separately (stepwise) or together (concerted). It
is modeled by two equivalent quartic potentials interacting through dipolar and quadrupolar coupling
terms. The tunneling Hamiltonian has two imaginary modes (reaction coordinates) and a potential
with a single maximum that may turn into a saddle-point of second order and two sets of (inequiv-
alent) minima. Diagonalization is achieved via a modified Jacobi-Davidson algorithm. From this
Hamiltonian the mechanism of proton transfer is derived. To find out whether the two protons move
stepwise or concerted, a new tool is introduced, based on the distribution of the probability flux in the
dividing plane of the transfer mode. While stepwise transfer dominates for very weak coupling, it is
found that concerted transfer (co-tunneling) always occurs, even when the coupling vanishes since the
symmetry of the Hamiltonian imposes permanent entanglement on the motions of the two protons.
We quantify this entanglement and show that, for a wide range of parameters of interest, the lowest
pair of states of the Hamiltonian represents a perfect example of highly entangled quantum states
in continuous variables. The method is applied to the molecule porphycene for which the observed
tunneling splitting is calculated in satisfactory agreement with experiment, and the mechanism of
double-proton tunneling is found to be predominantly concerted. We show that, under normal con-
ditions, when they are in the ground state, the two porphycene protons are highly entangled, which
may have interesting applications. The treatment also identifies the conditions under which such
a system can be handled by conventional one-instanton techniques. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.5000681]

I. INTRODUCTION

Many processes in physics, chemistry, and biology
involve tunneling of (quasi)particles between two equivalent
configurations separated by a barrier. If the particles occur in
pairs, the question arises whether these particles tunnel con-
certedly (co-tunneling) or stepwise. It seems clear that strong
interaction between the particles will favor co-tunneling, but
even if there is no interaction, quantum mechanics imposes a
degree of dependence if the particles are identical and their
configurations are equivalent, as has been well recognized
for electrons, spins, and qubits (see Ref. 1 and references
therein). It is the purpose of this paper to introduce and study
a new example of this type, namely, two protons in equiv-
alent symmetric hydrogen bonds. Well-known examples are
carboxylic acid dimers2–4 and porphycenes5,6 (see Fig. 1),
where the hydrogen bonds occur in pairs. Since hydrogen
bonds are polar, they will interact, which will support co-
tunneling of the protons. For instance, in the formic acid
dimer, where the O–H hydrogen bonds show strong polar-
ity, the interaction will be very strong and we know that the
two protons tunnel as a single particle since the tunneling

a)Author to whom correspondence should be addressed: qf.ramos@usc.es

potential shows an ordinary (first-order) transition state and
the observed tunneling splitting is very small, as expected
for double-proton transfer. By contrast, in porphycene, the
N–H hydrogen bonds are much weaker, leading to a greatly
reduced dipole interaction; correspondingly, the tunneling bar-
rier is a second-order saddle point and the large tunneling
splitting is close to what is expected for single-proton transfer
although it is not immediately clear whether it can be inter-
preted that way. Quantum-chemical calculations show that in
porphycene the second-order saddle point connects not only
the two equilibrium configurations along one tunneling coordi-
nate but also two equivalent secondary minima along another
so that there is an alternative tunneling path, involving the
secondary minima. It is not evident, however, which path is
preferred.

In this paper, we focus on double-proton transfer in
molecules and complexes with two equivalent hydrogen bonds
in which the potential energy surface shows four pair-wise
equivalent minima. Although not many of such systems are
known to date, they are of fundamental significance since
they introduce the problem of proton tunneling through two-
dimensional (2D) barriers and allow investigation of the range
of cooperativity of proton motion in systems with coupled
hydrogen bonds. Thus far these systems, in which the cou-
pling is weak enough to allow both separate and concerted
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FIG. 1. Two potential energy surfaces for double-proton
transfer represented by two equivalent symmetric hydro-
gen bonds, (a) porphycene and (b) formic acid dimer
[colors in the hydrogen-bond pairs shown in the blue
boxes: blue (nitrogen), brown (carbon), white (hydrogen),
and red (oxygen)].

proton transfer, have not been systematically investigated.
Such an investigation requires the inclusion of proton-proton
correlation in the dynamics and thus calls for a full quan-
tum treatment since alternative instanton techniques would
give rise to interference effects if more than one instanton
is present. The method we will adopt is based on direct diag-
onalization of an imaginary-mode Hamiltonian of a type we
introduced earlier for 1D tunneling.7–9 A fundamental assump-
tion is that this Hamiltonian can be written as the sum of
two equivalent single-proton Hamiltonians plus a coupling.
In these single-proton Hamiltonians, the proton moves in a
symmetric double-minimum potential. To show the full extent
of the cooperativity, we choose a symmetric arrangement in
which the two single-proton Hamiltonians are identical and
coupled by terms up to the fourth order in the tunneling coordi-
nates, such that the overall symmetry corresponds to the point
group D2h. This Hamiltonian, derived in Sec. II, is a gener-
alization of the Hamiltonian previously handled by instanton
techniques,10 which was restricted to dipole coupling. In its
previous version, it has been applied by us10 and others11–13

to a number of such double-proton transfer processes with
various arrangements of the two hydrogen bonds. Investi-
gations of alternative 2D Hamiltonians with more than one
transition state have been reported in the literature,14–16 but
these were limited to potentials with only one set of min-
ima and thus without a stable intermediate; moreover, they
do not (generally) decompose into two 1D Hamiltonians and
a coupling, and thus fail to meet the fundamental assumption
formulated above, expected to be required for application to a
pair of weakly coupled hydrogen bonds. The only exception
is the model based on diabatic states developed recently by
McKenzie,17 which has some similarity to our Hamiltonian of
Ref. 10.

In Sec. III, the Hamiltonian is diagonalized, first in a sim-
plified form so as to allow an analytical solution to show
the symmetry properties, and thereafter numerically with a
modified Jacobi-Davidson algorithm for sparse matrices.18

The resulting eigenvalues yield tunneling splittings and the
eigenfunctions contain information on the nature of the pro-
ton transfer mechanism responsible for these splittings. The
eigenfunctions also reveal the degree of entanglement of the
two protons (i.e., their deviation from separability), manifested
in specific localization in the 2D space of continuous vari-
ables (CV) defined by the proton coordinates. To turn the

information contained in the eigenfunctions into an explicit
form, we introduce in Sec. III a new entanglement measure
in CV, termed “confinement” and show that the lowest pair of
states of the Hamiltonian is highly entangled for a wide range
of parameters of interest. To obtain information on the proton
transfer mechanism, we introduce in Sec. IV a new method,
which consists of calculating the probability flux between the
eigenstates involved in the transfer. The distribution of this flux
in the dividing plane answers the original question: when and
to what extent can the cooperative tunneling be separated into
two distinct regimes, whereby the two particles move concert-
edly or stepwise. Specifically, the flux distribution reveals the
favored tunneling pathways of two protons in coupled hydro-
gen bonds and allows a formal distinction between concerted
and stepwise tunneling processes and their dependence on the
potential. After testing the method in Sec. V by applying it to
double-proton transfer in a real system (porphycene), we use
it in Sec. VI to assess the range of validity of conventional
one-instanton techniques previously applied to double-proton
transfer.3,19

II. THE MODEL HAMILTONIAN

We consider a model of two identical particles of mass
m moving in identical symmetric double-minimum potentials,
denoted by U(x1,2) in a symmetric arrangement correspond-
ing to the point group D2h. We rewrite their simplest form,
U(x) =�ax2 + bx4, in terms of the stationary states U(0) = 1/2
and U(± 1)= 0, which define, respectively, the height and the
halfwidth of the central barrier, to be denoted by U0 and
∆x; in dimensionless units, and the 1D potential then reads
U(x) = (1/2)(1 � x2)2. The lowest-order symmetry-allowed
couplings between the two particles are proportional to x1x2

(dipole coupling): x2
1x2

2 (quadrupole coupling) and x1x3
2 + x2x3

1
(dipole-octupole coupling). The resulting 2D model Hamilto-
nian contains and is limited to all symmetry-allowed terms
up to the fourth power of x; scaling energy again by 2U0

and coordinates by ∆x, it takes the following dimensionless
form:

H2D(x1, x2) = −
1
2

g2 *
,

∂2

∂x2
1

+
∂2

∂x2
2

+
-

+
∑
i=1,2

Ui(xi)

− 2Gx1x2 − Dx2
1x2

2 − C(x3
1x2 + x3

2x1), (1)
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where g= ~/∆x
√

2mU0 is the dimensionless equivalent of ~,
and G, D, and C are the corresponding coupling constants.
Although formally allowed by symmetry, the last interac-
tion term is negligible in realistic systems and will be omit-
ted from further consideration. We take U1 and U2 to be
antiparallel in the sense that the two equilibrium configura-
tions correspond to x1 = x2 =± 1 and the two secondary min-
ima, if they exist, at x1 =− x2 =± 1 for G> 0, i.e., repulsive
interaction, as in our case. Changing the sign of G changes
only the relative sign of x1 and x2 at the minima and thus
does not affect the generality of the treatment. There is no
restriction on the sign of D, but there is one on its magni-
tude for we assume that the multipole expansion converges
uniformly, i.e., that the quadrupole coupling, as formulated,
is weaker than the dipole coupling: |D| < 2G. We showed
in Ref. 3 that this Hamiltonian (without the quartic cou-
pling) represents two coupled identical hydrogen bonds, where
U(x1,2) are the double-minimum potentials along the proton
coordinates.

To relate the individual coordinates x1,2 to the sym-
metry of the potential, we transform Eq. (1) to collective
coordinates

xs = (x1 + x2)/2, xa = (x1 − x2)/2, ms = 2m. (2)

This leads to the following form of the Hamiltonian, which
again consists of two coupled quartic potentials, and for
comparison, we list also the potential of uncoupled particles
V0

2D:

H2D(xs, xa) = −
1
2

g2
s

(
∂2

∂x2
s

+
∂2

∂x2
a

)
+ V2D;

V2D = (1 − D)[(x2
s − ∆x2

s )2 + (x2
a − ∆x2

a )2 + 2Rx2
s x2

a ];

V0
2D = (x2

s − 1)2 + (x2
a − 1)2 + 6x2

s x2
a , (3)

where gs = ~/∆x
√

2msU0, ∆xs =
√

(1 + G)/(1 − D),∆xa

=
√

(1 − G)/(1 − D), and R = (3 + D)/(1 � D). While the
quadrupole coupling does not affect the symmetry of the poten-
tial, it does affect its shape and the strength of coupling between
xs and xa: for D > 0, it makes the potential wider and flatter,
and increases the coupling constant R; for D < 0, it makes the
potential narrower and higher but decreases R. The potential
in Eqs. (1) and (3) is defined by four parameters: U0,∆x, G,
and D. In the form of Eq. (3), it can be directly related to the
quantum-chemically calculated potential of a given molecule
or complex. Methods to extract the model parameters from
the calculated potential are discussed in Sec. V and in the
Appendix.

The potential in Eqs. (1) and (3) has up to nine station-
ary configurations, of up to four different types.3 The most
symmetric configuration, denoted by MAX, has the protons
in the center of its bonds. Having the highest symmetry and
also, since the interaction is repulsive, the highest energy, it
serves as a barrier between the two most stable configurations
with the protons in the trans position (x1 = x2 =± 1), denoted
by MIN. MAX also serves as a barrier between the corre-
sponding cis configurations (x1 =− x2 =± 1), denoted by INT
(for intermediate), if these are stable, in which case MAX
assumes the form of an SP2 if other degrees of freedom are

added. The fourth stationary configuration, if it exists, is a
first-order saddle point (SP), which serves as a transition state
between cis and trans configurations. Figure 1(a) illustrates
the potential-energy landscape with a stable INT, which is
considered here. If the stable intermediate collapses into a
SP, the potential supports a single set of minima, connected
through two tunneling pathways: one through the SP2, and the
other through the SP; such scenarios have been analyzed in the
literature.14–16

The stationary points and the corresponding frequencies
ωs,a are defined with respect to the collective coordinates xs,a,
which represent the modes with imaginary frequencies at the
SP2; in the adopted units, they are scaled by a “scaling fre-
quency” Ω defined as Ω=

√
2U0/m0 /∆x, where m0 is the

proton mass. For our basic assumptions G > 0 and |D| < 2G,
the condition for global minima is D < 1; then, if 0 < G < 1,
MAX will be an SP2; if G > 1, it turns into a SP. Within the
limits where MAX is an SP2, a pair of stable intermediates
INT will always exist if G < 1/4, and if D > 2G− 1 for larger
G; if D < 2G − 1, the INT collapses into a SP. These regimes
are depicted in Fig. 2, where we consider only systems with
an SP2, i.e., those with G < 1. The red color represents sys-
tems with INT and the green color represents systems with
INT replaced by an SP; the latter were studied in Refs. 14–16.
Areas not within the cone of the solid lines are outside our
convergence limit |D| < 2G; white areas represent unphysical
combinations.

Since the green area represents systems with a single set of
minima, it can be treated by instanton techniques in a straight-
forward way; however, as there are two saddle points, two
instantons are possible: a 1D instanton that connects the min-
ima through the SP2, termed here “concerted” instanton, and
a 2D instanton that connects them through the SP. The green
area corresponds to a tunneling regime governed by the con-
certed instanton, as we show elsewhere.20 The symbols repre-
sent alternative tunneling regimes, but are outside the conver-
gence cone and therefore of no interest to us. The problem of

FIG. 2. Coupling regimes supported by the model potential represented by
Eq. (1). The colored areas are associated with potential energy surfaces of the
same color. The solid lines represent the limiting condition |D | < 2G. Red
color corresponds to systems with a stable intermediate (INT), whereas green
and yellow colors correspond to systems without INT; for the other symbols,
which are outside the range of parameter values of our model, see text.
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two-proton tunneling in realistic systems of this type can thus
be solved by standard instanton techniques based on the con-
certed instanton; in Sec. VI, we report such calculations for the
2D Hamiltonians (1,3). We thus consider the problem solved
for potentials of this type.

Here we focus on systems with INT within our imposed
parameter limits, represented by the red area inside the cone.
In this case, the application of instanton techniques is more
complicated since the two sets of minima support two distinct
families of instantons, which will be generally subject to inter-
ference. For that reason we avoid the instanton approach and
adopt a full quantum treatment. We return to this problem in
Sec. VI, where we compare the quantum results with those
obtained from the one-instanton approximation based on the
concerted instanton.

A complete solution of the multidimensional vibrational
Hamiltonian of a complex molecule with two tunneling coordi-
nates far exceeds our present computational capabilities. One
of the closest approaches in this direction involves the study
of the vibration-rotation tunneling spectrum of the (NNO)2

dimer.21 In that work, the rovibrational Schrödinger equa-
tion is solved using the Lanczos algorithm and an uncoupled
product basis set. Another interesting work, but restricted
to a single tunneling coordinate, is the study of malonalde-
hyde, the benchmark molecule for 1D tunneling, by Hammer
and Manthe.22 These authors generated eigenvalues, which,
for energies up to about 1400 cm�1, show very good agree-
ment with measured tunneling splittings; at higher energies,
they encountered convergence problems. While this calcula-
tion provides an important landmark, it turned out that the
results could not be easily interpreted in terms that allow
generalization to other molecules. The complex problem of
analyzing the splittings in terms of the multimode wave
functions was never attempted; the qualitative interpretation
we provided later23 is based on general principles and on
symmetry.

III. SYMMETRY AND ENTANGLEMENT
A. An approximate solution

Before discussing numerical diagonalization of the
Hamiltonian (1) or (3), we consider an approximate analytical
diagonalization for the zero-point states only. It will apply if
levels involving excitation of high-frequency vibrations (such
as OH-stretch modes) are well separated from the zero-point
levels; this will generally be the case if the coupling is very
weak (G << 0.5) and quadrupole coupling can be neglected,
i.e., D = 0.

In this approximation, the basis set is reduced to the four
products φ±1 φ

±
2 , where φ(x)± are the two zero-point eigenfunc-

tion for the 1D potential U(x) with (dimensionless) eigenvalues
ε± = 1

2 (ω0 ∓ ∆0); the subscripts 1 and 2 refer to the two pro-
tons and the superscripts + and � refer to wave functions with
an even and odd number of nodes, respectively. Alternatively,
one can form eigenfunctions of the proton pair localized in the
trans (T) and cis (C) configuration, respectively,

ψT
s = (1/

√
2)(φ+

1φ
+
2 + φ−1 φ

−
2 ), ψT

a = (1/
√

2)(φ+
1φ
−
2 + φ−1 φ

+
2),

ψC
s = (1/

√
2)(φ+

1φ
+
2 − φ

−
1 φ
−
2 ), ψC

a = (1/
√

2)(φ+
1φ
−
2 − φ

−
1 φ

+
2),

(4)

where the subscripts s and a (not in italics) refer to symmet-
ric and antisymmetric functions. The 2D eigenfunctions are
denoted by Φ± with subscripts I, II, III, and IV in ascending
order of energy corresponding to eigenvalues EI, EII, EIII, and
EIV. If there is no coupling (G = 0), the eigenvalues of the sym-
metric eigenstatesΦI andΦIV are separated by 2∆0, i.e., twice
the zero-point splitting of the 1D potential U(x). The degen-
erate antisymmetric states ΦII and ΦIII are located halfway
between the two symmetric eigenstates. Introduction of dipo-
lar coupling splits them into components whose properties are
determined by symmetry; for G > 0, the trans component has
the lower energy.

Since the 2D Hamiltonian (1,3) is of D2h symmetry, its eigenvectors (wave functions) are of ag, b3g, and b2u type; analytical
diagonalization of the 4 × 4 matrix of Hamiltonian (1) with D = 0 then yields

Φ
+
I (ag) = C+φ

+
1φ

+
2 + C−φ−1 φ

−
2 = CTψ

T
s + CCψ

C
s , EI = ω0 − ∆0

√
1 + κ2,

Φ
−
II(b3g) = (1/

√
2)(φ+

1φ
−
2 + φ−1 φ

+
2) = ψT

a , EII = ω0 − κ∆0,

Φ
−
III(b2u) = (1/

√
2)(φ+

1φ
−
2 − φ

−
1 φ

+
2) = ψC

a , EIII = ω0 + κ∆0,

Φ
+
IV(ag) = −C−φ+

1φ
+
2 + C+φ

−
1 φ
−
2 = −CTψ

T
s + CCψ

C
s , EIV = ω0 + ∆0

√
1 + κ2,

(5)

where κ = 2GM2/∆0, C± = [(1 ± 1/
√

1 + κ2 )/2]1/2, CT, C

= (C+ ±C−)/
√

2, and EI–IV are listed with respect to U(1).
The parameter κ contains a squared 1D matrix element
M = |〈φ+ |x |φ− 〉|2; it is easily obtained that M ' 1 + 1/2

√
απ,

where α is the ratio α = (∆x/a0)2 >> 1, a0 =
√
~/mω0 being

the zero-point amplitude in the well of U(x).
It follows from Eq. (5) that the coupling arranges the four

zero-point levels symmetrically in two pairs, associated with

trans and cis proton transfer localized along the xs and xa

axis, respectively. This allows a simple estimate of the aver-
age energy and the tunneling splitting of the lowest pair of
levels,

E0 ≡ (EII + EI)/2 = ω0 − (1/2)
√
∆2

0 + 4G2 − G,

∆E0 ≡ EII − EI =

√
∆2

0 + 4G2 − 2G. (6)
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It shows how the coupling reduces the 1D splitting if the two
protons start to move as a pair. Equation (5) predicts that the
same splitting with reversed sign applies to the next split pair
of levels, but this is likely to be inaccurate because of the
proximity of (neglected) excited levels. The dependence of the
eigenvalues EI–IV on G is shown in Fig. 3, where solid/open
symbols correspond to +/� levels, with respect to ω0 taken as
origin.

Solution (5) represents the contribution of the lowest pair
of states (φ+

i , φ−i ) of each particle i = 1, 2. Since φ+
i and φ−i

are orthonormal, it thus represents an analogue in continuous
variables of the four states of two coupled two-level systems
(TLS2); we will refer to it as a TLS2-type solution. Its main
feature is the two-proton entanglement represented by the
antisymmetric functions Φ−II and Φ−III, which (in this approx-
imation) are confined exclusively in the trans and cis con-
figuration, respectively, independent of the coupling strength.
Their symmetric counterparts Φ+

I and Φ+
IV, respectively, con-

tain contributions from both configurations, but with increas-
ing coupling strength also tend to localize in the corresponding
regions of the 2D space; this is seen from the behavior of the
coefficients CT,C, which in the most typical regime, κ >> 1,
take the form CT ' 1 − 1/8κ2; CC ' 1/2κ. As we show in
Subsection III C by explicit quantitative measures, this high
degree of entanglement of the two protons in the ground state
is entirely due to symmetry and therefore remains essentially
unchanged in the exact solution. In Sec. IV we also show
that it is of fundamental importance for the mechanism of
co-tunneling of the two protons.

B. The exact solution

The basis set that diagonalizes the 2D Hamiltonian is taken
in the form of products of harmonic-oscillator wave functions,
i.e., ψ =

∑
m,j Cm,j χm(x1)χj(x2). Functions χm(x1) and χj(x2)

FIG. 3. Plot of the lowest four (dimensionless) eigenvalues of Hamiltonian
(1,3) against the correlation factor G for D = 0. The remaining parameters are
U0 = 1584 cm�1,∆x = 0.34 Å, and m = proton mass, which define the (dimen-
sionless) parameters of 1D tunneling ω0 = 0.550, ∆0 = 0.031, and g = 0.303.
Thick solid/broken lines depict the numerical eigenvalues referring to sym-
metric/antisymmetric levels of the 1st (black) and 2nd (red) pair; solid symbols
depict the corresponding levels obtained from the analytical solution (5). Thin
lines represent the stationary points of the potential as a function of G as indi-
cated. Energies above MIN and below INT in orange, above INT and below
SP in dark yellow and above SP and below MAX in light yellow.

are centered at x1 = x2 = 0 and chosen so that their zero-point
amplitude equals the halfwidth ∆x of the 1D potential. The
secular equation then takes the form ‖H − E‖ψ = 0, where the
Hamiltonian matrix elements have the form

Hm,n;j,k = H0
m,n;j,k + V int

m,n;j,k

H0
m,n;j,k = h(α)

m,nδj,k + h(α)
j,k δm,n; V int

m,n;j,k = −2Gxm,nxj,k − Dx2
m,nx2

j,k

h(α)
p,q = [α(2p + 1) + (1/2)]δp,q + (1/2)x4

m,n − (1 + α)x2
m,n; α = (1/2)g2

xN
j,k =〈 χj(x)|xN | χk(x)〉.

(7)

Here H0
m,n;j,k represents the sum of the 1D Hamiltonian matri-

ces h(α)
m,n in Eq. (1); V int

m,n;j,k represents the coupling term; δp,q are

delta-symbols and 〈 χj(x)|xN | χk(x)〉 are harmonic-oscillator
matrix elements. Because of the complexity of the 2D poten-
tial shown in Fig. 1(a), which has two sets of (inequivalent)
minima, a large number of functions are required before con-
vergence is achieved, but, due to the choice of the proper basis
set, the resulting matrix is sparse enough to be amenable to a
modified Jacobi-Davidson algorithm for sparse matrices.8 The
resulting eigenfunctions and eigenvalues (denoted by Roman
numerals as in Sec. III A) are either symmetric, labeled by

a superscript +, or antisymmetric, labeled by a superscript �,
relative to the dividing plane of the proton motions. Symmetric
states belong to the representation ag and antisymmetric states
to either the representation b3g or b2u depending on whether
they are aligned along the trans or the cis axis, respectively.
However, the order of the levels need not be the same as that
in (5) but will depend on the model parameters, except for
the ground level, EI, which is always symmetric, while, for
repulsive interaction (G> 0), the lowest pair of states is always
aligned along the trans axis. The other pair of zero-point states,
aligned along the cis axis, may or may not be next in the ladder
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of states, depending on the parameter values, more specifically,
on the energy of the first trans overtone.

In Fig. 3 we present a general picture of the dependence
of the (dimensionless) lowest four eigenvalues on the strength
of the dipole coupling in the range 0 ≤ G ≤ 0.5 for D = 0,
thus covering a full range of systems with secondary minima
INT. The model parameters are typical for coupled hydrogen
bonds (see caption of Fig. 3) and assign the first four states to
the two pairs of zero-point states. The thick solid and broken
lines display the eigenvalues for symmetric and antisymmet-
ric levels, respectively, relative to an origin ω0, which are to
be compared with the eigenvalues of the four-level model of
Subsection III A, namely, in the form of full symbols. The
eigenvalues are plotted together with the energies of the sta-
tionary configurations, which also vary as a function of G;
rescaled to ω0, they assume the form EMAX = 1−ω0, EMIN

= 1− (1 + G)2 −ω0, EINT = 1− (1−G)2 −ω0 and ESP =
1
2 + G2

−ω0; in Fig. 3 they are depicted by thin lines. For zero G, the
lowest four eigenvalues in Eq. (5) are exact; thus it follows
directly from the model that for zero G, the lowest four eigen-
values, i.e., the zero-point levels, correspond to two symmetric
eigenstates and a central degenerate antisymmetric eigenstate.
Introduction of repulsive coupling splits the degenerate state
into two antisymmetric components of different symmetry: b3g

for the lower and b2u for the upper component. With increasing

coupling, their separation increases rapidly. The two symmet-
ric (ag) levels also increase their separation, but more slowly,
with the result that the lower pair separates from the upper pair
forming a gradually closer doublet, while the upper two levels
cross and reverse their ordering so as to become the same as that
of the lower pair, i.e., symmetric below antisymmetric, which
is the natural order for a pair of isolated tunneling levels. This
behavior is superimposed on the general trend towards lower
energies. This pattern can be readily understood on the basis of
the corresponding changes in the potential and in the effective
mass of the tunneling particle.

For the present model parameters, the lowest pair is
located well above EINT for coupling strengths up to G ' 0.15;
hence the cis region of the 2D space is classically allowed for
the lowest pair of eigenstates. However, the planar projections
of the wave functionsΦ+

I andΦ−II in Fig. 4 show that this region
is forbidden by symmetry, namely, strictly for the antisymmet-
ric b3g state but also, to an approximation depending on the
coupling, for the symmetric state. This entanglement of the
two protons represented by the exact eigenvectors is deter-
mined by symmetry, and as seen from this figure, bears close
resemblance to that of the approximate solution (5). We quan-
tify this entanglement in Subsection III C by introducing a new
measure in continuous variables for the states of Hamiltonian
(1,3).

FIG. 4. Projections of the lowest four
eigenfunctions of Hamiltonian (1,3)
(from bottom to top), for G = 0 (left
panels) and G = 0.10 (right panels); the
remaining parameters are as in Fig. 3.
The symmetry of the eigenfunctions is
also indicated. The collective coordi-
nates xs and xa in Eq. (2) are represented
by the LL-RR and LR-RL diagonals,
respectively.
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C. Measure of entanglement in H2D

The high degree of entanglement of the lowest states
with increasing coupling manifests itself in strong localization
along the collective coordinates xs or xa, i.e., along the LL-RR
or LR-RL diagonal in Fig. 4, respectively. This localization
means that the 2D wave functions lose their separability into
products of individual-particle wave functions and become
entangled,24 as seen from a comparison of Φ+

I and Φ−II at G
= 0, defined by Eq. (5) and illustrated in Fig. 4: Φ+

I = φ
+
1φ

+
2 is

separable, and thus not entangled, but exhibits equal “popula-
tion” in all four “corners” LL, LR, RL, and RR of the 2D space
{x1, x2} in Fig. 4; Φ−II = (1/

√
2)(φ+

1φ
−
2 + φ−1 φ

+
2) is a Bell-type

function (the 1D wave functions φ+,−
i being orthonormal) and

thus maximally entangled; it exhibits complete localization
along xs. This transformation is formalized by representing the
solution (5) in terms of the localized basis set {ψT

s,a,ψC
s,a}, which

forms a 2× 2 analogue to the Bell functions expressed in con-
tinuous variables (CV). Indeed, recasting φ+,−

i in the familiar

form φ+,−
i = (1/

√
2)(|L >i ± |R >i) via functions localized in

the left/right well of U(xi), one obtains the standard Bell-type
representation

ψT
s,a = (1/

√
2)(|LL > ± |RR >);

ψC
s,a = (1/

√
2)(|LR > ± |RL >).

(8)

Accordingly, the eigenvectors (5) can be represented in a form
analogous to that of TLS2,

Φ = α |LL > + β |LR > + γ |RL > + δ |RR >, (9)

where the corresponding coefficients are defined in Eq. (5)
via the parameter κ. For TLS2, a common measure of entan-
glement is the Peres-Horodecki criterion,25,26 which in the
Wootters formulation27 defines the concurrence measure

C = 2|αδ − βγ |. (10)

To define which measure of entanglement in CV is adequate
for H2D, we recast this expression in a form applicable to the
solution (5),

2|αδ − βγ | ≡ |Ps − Pa |, (11)

where Ps and Pa are the probabilities of localization along the
LL-RR and LR-RL diagonal, respectively,

Ps =

∫
x1∗x2>0

|Φ(x1, x2)|2; Pa =

∫
x1∗x2<0

|Φ(x1, x2)|2. (12)

Analogously, we formulate a general entanglement measure in
CV, termed “confinement,” for any (orthonormal) eigenstate
Φ(x1, x2) of H2D in the form

Co = |Ps − Pa |. (13)

For the approximate solution (5), the confinement measure is
obtained analytically, the results being the same for the two
pairs of states (Φ+

I ,Φ−II) and (Φ−III,Φ
+
IV),

C−o ≡ C− = 1; C+
o ≡ C+ = κ/

√
1 + κ2. (14)

For the exact eigenstates obtained in Subsection III B, the
confinement measure is obtained numerically; in Fig. 5, we
illustrate its dependence on the coupling parameter G for the
ground-state pair ΦI,II of a system of which the other parame-
ters are as in Figs. 3 and 4. Figure 5 quantifies the high degree

FIG. 5. Entanglement measures confinement C+/−
o (solid/dashed black

curves) and von Neumann entropy S+/� (solid/dashed red curves) defined by
Eqs. (13) and (16), respectively, for the lowest pair of states of Hamiltonian
(1) as a function of the coupling strength G. Thin/thick lines represent the
approximate/exact solutions, respectively. The inset represents C+/−

o for the
2nd pair of states. The remaining parameters are as in Fig. 3.

of entanglement of these states in the most common regime
κ >> 1, where C−o ' 1; C+

o ' 1 − 1/2κ2.
To illustrate the performance of the confinement measure,

we compare it with the von Neumann entropy of the reduced
state, which was shown to be a good entanglement measure in
CV28 and has been applied, e.g., to two-electron systems29,30

as well as to the entanglement of electronic and vibrational
degrees of freedom of a molecule.31

The eigenstates {Φ(x1, x2)} of Hamiltonian (1) are pure
two-particle states. For a given eigenstate |Φ(x1, x2)〉, the den-
sity matrix is ρ̂= |Φ〉〈Φ| and the reduced density matrix is
ρ̂red(x1, x′1)= tr2 |Φ(x1, x2)〉〈Φ(x′1, x2)|, where tr2 indicates that
the trace applies to x2 only.32,33 The von Neumann entropy of
the reduced state, given by

S = −tr( ρ̂redlog2 ρ̂
red), (15)

can be evaluated from the eigenvalues {λ} of ρ̂red in the form

S = −
∑

i

λilog2λi. (16)

To find these eigenvalues, we use a basis set of N single-
proton wave functions {φ(xi)} of the type used in Sec. III A
and first diagonalize the Hamiltonian, which yields the eigen-
functions in the form Φ(x1, x2)=

∑N
m,j = 1 Cm,jφm(x1)φj(x2)

(coefficients real). The reduced density matrix then is
given by ρ̂red(x1, x′1)=

∑N
m,n= 1 Rm, nφm(x1)φn(x′1), where Rm,n

=
∑N

j = 1 Cm,jCn,j. Its eigenvalues {λ} are obtained by solving

the secular problem ‖ρ̂red − λ‖ χ(x1) = 0, and for the approxi-
mate solution (5), which corresponds to N = 2, this can be done
analytically; it yields again the same von Neumann entropy for
the two pairs of states in the form

S− = 1, S+ = −(C2
+ log2 C2

+ + C2
− log2 C2

−), (17)

so that S+ ' 1−1/κ2 ln 2 at κ >> 1, similar to the confinement
measure (14). For N > 2, the secular problem can only be
solved numerically, and thus the eigenvalues {λ} and hence S
depend on N. We note that obtaining converging results for the
von Neumann entropy turned out to be a non-trivial task since
we deal with tunneling motions, whereby the eigenfunctions
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Φ(x1, x2) are exponentially small in vast areas of the 2D space.
In Fig. 5 we show the results for the ground-state pair Φ+

I and
Φ−II obtained with a basis set of N = 46 single-proton wave
functions, which proved sufficient.

Figure 5 shows that, although not identical, the two entan-
glement measures Co and S behave similarly, which proves
the validity of the confinement as entanglement measure.
It is physically transparent for the systems under consider-
ation and much easier to calculate than the von Neumann
entropy, once the 2D eigenfunctions are available. As illus-
trated by the figure, for meaningful parameter values, both
criteria indicate a very high degree of entanglement of the
ground-state pair, especially for the antisymmetric state. This
is a consequence of the symmetry of the system, rather than
of a specific behavior in the regime of “deep tunneling.” In
fact, for the parameters used, Fig. 5 illustrates that C+

o > 0.95
for couplings as low as G ' 0.075. It follows from Fig. 3
that in this parameter region, the ground-state pair of lev-
els is well above the cis configuration INT (i.e., the LR-RL
diagonal) so that the corresponding ground-state wave func-
tions are classically allowed in this coordinate region. How-
ever, the strong entanglement confines these states almost
exclusively to the trans configuration MIN (i.e., the LL-RR
diagonal).

The same approach applies, in principle, to the second pair
of zero-point states Φ+

III and Φ−IV, for which the trans region is
symmetry forbidden there, but as Figs. 3 and 4 show, the effect
of other states perturbs this simple pattern. While the coupling
imposes trans localization on the b3g state and cis localization
on the b2u state, the two ag states can by symmetry spread
over the entire plane. However, changing the coupling leads
to mixing of the states since they have the same symmetry;
this mixing will cause localization, as follows from the fact
that stronger coupling leads to higher barriers and thus to more
localized wave functions. On the other hand, stronger coupling
also means stronger perturbation due to higher-energy states;
as a result, the pattern of eigenvalues and of the entanglement
of this pair of states is more complex, as shown in Figs. 3 and
5, respectively.

For the ground-state pair, the confinement of the sym-
metric state approaches that of the antisymmetric state for
increasing coupling. Physically this corresponds to a pro-
ton pair that tunnels between two trans configurations. The
mechanisms of these transitions, i.e., whether they move pre-
dominantly stepwise as single particles or concertedly as a
double particle, are not immediately obvious. Now that we
have shown how the eigenfunctions are governed by symmetry
and how symmetry defines their entanglement, we can proceed
with analyzing the mechanism; this problem is addressed in
Sec. IV.

IV. MECHANISM OF CO-TUNNELING
A. The probability flux in the dividing surface

To quantify the mechanism of co-tunneling, we intro-
duce a new tool based on the analysis of the probability flux
within a pair of tunneling states. This flux, which is an integral
over the dividing surface between two equivalent minima, is

proportional to the tunneling splitting,34 a relation known as
the Herring formula.35 In the presence of two tunneling par-
ticles, the distribution of the probability flux in the dividing
plane contains all the information needed to study the mech-
anism of co-tunneling. We therefore propose to use this tool
to determine the preferred mechanism of double-proton trans-
fer in a given molecule or complex. In this section, we show
how the quantum treatment can provide a quantitative measure
for the degree of concertedness of two-particle tunneling and
thus for the relative contributions of stepwise and concerted
transfer mechanisms. We show also that these contributions
are directly related to the entanglement of the particles, which
is determined by symmetry.

For the present model Hamiltonian (3), the lowest pair
of states is localized along the trans-trans path; the dividing
plane thus is xs = 0 and the distribution of the probability flux
is given by

Fs(xa) =

[
Φ

+
I (xs, xa)

∂Φ−II(xa, xs)

∂xs

]

xs=0
. (18)

First we ensure the quality of the eigenfunctions by showing
that the flux ∫

∞
−∞ dxaFs(xa) through the dividing plane is related

to the zero-point splitting ∆E0 obtained from the eigenvalues
in accordance with the Herring formula,35 which here takes
the form

∆E0 =
1
2

g2
s

∫
∞
−∞ dxaFs(xa)

∫
∞
−∞ dxa ∫

∞
0 dxsΦ

+
I (xs, xa)Φ−II(xs, xa)

. (19)

In terms of trajectories, this flux includes contributions from
all possible transfer paths between the two MIN configu-
rations. If Fs(xa) peaks at xa = 0, the dominant path will
be tunneling through MAX (xs = xa = 0); the transfer will
then be concerted. If, on the other hand, the flux density
peaks near xa =± 1, the dominant path will pass through INT
[xs = 0, xa =±

√
(1 − G)/(1 − D)]; the transfer will then be

stepwise. The question to what extent each of these mecha-
nisms contributes to two-particle tunneling within a given pair
of states can thus be answered by analyzing the flux distri-
bution in the corresponding dividing plane. In Fig. 6(a) we
plot such distributions for G = 0 and 0.10 for the same model
parameters as used in Figs. 3 and 4. The plots are decomposed
into the profiles of the wave function of the symmetric state
Φ+

I (xs, xa)xs = 0 and the first derivative of the antisymmetric state[
∂Φ−II(xs, xa)/∂xs

]
xs = 0

; the latter always peaks at xa = 0, where

the antisymmetric wave function changes sign.
The most remarkable feature of this flux is its behav-

ior at zero coupling G = 0. Then the lowest four eigenstates
ΦI–IV(x1, x2) are given by the analytical solution (5), as com-
binations of products of the zero-point eigenfunctions φ± of
the two protons in the 1D potential U(x). Since these can
be approximated by ± combinations of harmonic-oscillator
wave functions in the wells, it is easy to deduce the char-
acter of the projection of Φ+

I in the dividing plane xs = 0:
it is represented by the sum of two overlapping Gaussians
at xa =± 1, as one would expect for independent particles.
However, because the eigenvector Φ−II is antisymmetric, the
derivative |∂Φ−II/∂xs |xs = 0 always has its maximum at xa = 0;
as a result, the flux density acquires a value at the center that
cannot be described in terms of two independent tunneling
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FIG. 6. Distribution of the probability flux in the divid-
ing plane for the two pairs of zero-point states: (a)
Distribution of Φ+

I ; dΦ−II/dxs and the probability flux
Fs(xa) in the dividing plane xs = 0 (trans-trans tunnel-
ing), depicted by solid, dot-dashed and dashed lines,
respectively, for G = 0 (left panel) and G = 0.10 (right
panel). The area under Fs(xa) is proportional to the tun-
neling splitting obtained by diagonalization, as defined
by Eq. (9). (b): Same as in (a) but for the 2nd pair Φ+

III
and Φ−IV, in the dividing plane xs = 0 (cis-cis tunneling;
only for G = 0.10). The remaining parameters are as in
Fig. 3.

steps but reflects quantum-mechanical interference between
stepwise and concerted tunneling. Although the two protons
are not interacting, their wave functions remain entangled
due to the equivalence of their configurations, as demon-
strated in Sec. III C. Whatever the coupling, if there is
symmetry, there will always be co-tunneling. This implies
that the terms concerted and stepwise have only qualitative
significance.

The degree of co-tunneling induced by coupling depends
not only on G but also on the parameters g and D in Hamilto-
nian (1,3); for illustrative purposes, we set D = 0, as in Fig. 3.
An increase in G leads to increased confinement of the low-
est pair of eigenstates along the trans axis, and thus increased
entanglement, which will favor concertedness. As shown in
Fig. 6(a), for the parameters of Fig. 3 and double-proton tun-
neling, concerted transfer becomes significant for a coupling
as weak as G = 0.10 since the flux peaks at xa = 0, but is essen-
tially “flat,” with shoulders near xa '± 0.5, indicating stepwise
transfer. The general dependence of the flux distribution on G
in the range 0–0.22 is illustrated in Fig. 7 for the same param-
eters as above, which shows a gradual transition from two
overlapping Gaussians for G = 0 to a single peak for G = 0.22,
interpreted as the gradual replacement of stepwise by con-
certed transfer. Concurrently, the tunneling splitting decreases
from single-proton-like to double-proton-like.

Similar plots can be produced for any set of model param-
eters (g, G, D). But it should be realized that a given molecule
or complex is represented by a unique set of four model param-
eters, which together give a complete picture of the transfer
mechanism. We return to this problem in Sec. V, where we
deal with a realistic example.

These calculations show that, in the tunneling regime,
both concerted and stepwise transfer occur under the con-
ditions when the two mechanisms are competitive, i.e., the
potential has two sets of minima. This conclusion is at
variance with the conclusion, drawn from instanton analysis,10

that for nonzero coupling the transfer is always concerted. It

follows that the (conventional) one-instanton approach used
in that earlier study, which associates the zero-point splitting
with the concerted instanton xa ≡ 0 at T = 0 and ignores other
instantons present in the case of two sets of minima, fails in
this limit. However, the practical significance of this failure
may be limited to systems with unusually weak couplings.
For any given system, the question of the mechanism can be
answered by calculating the probability flux and interpreting

FIG. 7. Evolution of the flux distribution with the coupling strength G for
zero-point (trans-trans) tunneling. The flux density is renormalized by the
corresponding tunneling splitting so that the area under each curve equals
unity. The vertical profiles (in orange) show the evolution of the flux distri-
bution with G and the graph on the vertical panel illustrates the contribution
of the concerted mechanism given by the ratio ρ in Eq. (21), for the same
parameters as in Fig. 3. The blue color illustrates the flux distribution for
porphycene treated in Sec. V, where ρ≈ 1 (blue dot). The blue triangle indi-
cates the confinement entanglement measure of the lowest pair of states of
porphycene C+

o ≈ C−o ≈ 1.
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the transfer as (predominantly) concerted if it shows a domi-
nant central peak and (predominantly) stepwise if it shows twin
peaks.

B. How much co-tunneling?

To obtain a quantitative measure of the contributions
of each of these mechanisms to the zero-point splitting, we
compare the 2D tunneling splitting ∆E0, obtained from the
diagonalization of the full Hamiltonian matrix (7), with its
component for concerted tunneling, ∆E0,c, obtained by diag-
onalizing an effective 1D Hamiltonian for tunneling along
xs. The latter Hamiltonian, which we denote by H1D

eff (xs),
takes account of the zero-point energy of xa; for the low-
est pair of states ΦI, II(x1, x2), it is obtained from Eq. (3)
by replacing x2

a by its average value in the ground state 〈x2
a 〉

= 〈ΦI(x1, x2)|x2
a |ΦI(x1, x2)〉,

H1D
eff (xs) = −

1
2

g2
s
∂2

∂x2
s

+ (1 − D)
[
(x2

s − ∆x2
s )2 + 2Rx2

s 〈x
2
a 〉
]

.

(20)
It is easily seen that the term proportional to R reduces the
width (and height) of the 1D potential along xs, thus leading
to a larger splitting. By expressing the resulting splitting for
the co-tunneling as the ratio

ρ = ∆E0,c/∆E0, (21)

we have thus obtained a quantitative measure for the contribu-
tion of the concerted mechanism to the tunneling splitting. In
Table I we list ∆E0, ∆E0,c, and ρ as functions of G in the range
of G ∈ (0, 0.5) for the model parameters used in Fig. 3. In Fig. 7
we show how the ratio ρ gradually increases with increas-
ing coupling from 0.10 for vanishing coupling to 0.94 for the
largest coupling compatible with the presence of two sets of
minima. The Gaussian flux corresponding to concerted tun-
neling can be directly obtained from ∆E0,c and compared with
that obtained from diagonalization. For instance, for G = 0.10
illustrated in Fig. 6(a), the zero-point tunneling splitting
obtained from the concerted path is ∆E0,c = 2.9 cm�1, which,

TABLE I. Zero-point tunneling splitting ∆E0 and transfer mechanism as a
function of G. ∆E0 is obtained from direct diagonalization of Hamiltonian
(1). The transfer mechanism is quantified by the ratio ρ=∆E0,c/∆E0, where
∆E0,c is the splitting obtained from the 1D tunneling in Hamiltonian (20),
which corresponds to concerted tunneling. The splittings are reported in cm�1,
which is the order-of-magnitude for double-proton transfer in coupled hydro-
gen bonds. Model parameters as in Fig. 3: U0 = 1584 cm�1, ∆x = 0.34 Å,
D = 0, and m = proton mass.

G ∆E0 ∆E0,c ρ

0 98.4 9.4 0.10
0.025 34.1 7.1 0.21
0.05 17.6 5.3 0.30
0.075 10.4 3.9 0.38
0.10 6.4 2.9 0.45
0.15 2.8 1.6 0.55
0.22 0.96 0.64 0.65
0.33 0.19 0.14 0.76
0.44 0.035 0.030 0.86
0.50 0.013 0.012 0.94

compared with that obtained from diagonalization ∆E0

= 6.4 cm�1, implies that more than half of the flux is due to the
alternative step-wise mechanism.

In principle, the method applied to the lower pair of zero-
point levels can also be applied to the upper pair, where xa = 0
is the dividing plane. The corresponding flux density for the
cis tunneling takes the form

F a(xs) =

[
Φ

+
IV(xs, xa)

∂Φ−III(xs, xa)

∂xa

]

xa=0
, (22)

or, if the two levels have crossed, with interchanged subscripts
III and IV (but no interchange of superscripts + and �). For
zero coupling (G = 0), it is equivalent to the behavior of Fs(xa)
in Fig. 6(a), with two peaks indicating stepwise transfer, but
even for G ≥ 0.10, its behavior is irregular with multiple peaks
in its components, as illustrated in Fig. 6(b). This complex
and strongly non-Gaussian shape implies interference from
higher-energy states. It also confirms the well-known rule that
the lowest pair of states is the most entangled.

V. APPLICATION TO PORPHYCENE

Porphycene is a molecule that is subject to double-proton
transfer in a potential that represents two interchanging sta-
tionary isomers of symmetry C2h and C2v, which are both
subgroups of the point group D2h, representing a second-order
saddle point, similar to MAX in our model Hamiltonian (1,3).
To date it is the only molecule of this type for which a zero-
point splitting has been measured, namely, that between the
lowest two of the four zero-point levels in the electronic ground
state.36–38

To model double-proton transfer of a given molecule or
complex with N atoms, we formulate the 3N-6 (vibrational)
potential V in terms of the (mass-weighted) normal modes of
the configuration of highest symmetry, which is the SP2 con-
figuration; we denote these by (Xs, Xa; Y), where Xs,a denotes
the two modes with imaginary frequencies and Y denotes the
system of the remaining 3N � 8 (skeletal) modes. We restrict
V(Xs, Xa; Y) to terms harmonic in Y and quartic in X, and
the XY coupling to terms linear in Y. For molecules of the
point group D2h, only modes that are displaced between the
SP2 and the remaining stationary configurations are involved
in this coupling, i.e., modes of symmetry ag, b3g, b1u, and
b2u. This yields the multidimensional Hamiltonian in the pres-
ence of two tunneling coordinates in the following general
form:

H = −1
2
~2

(
∂2

∂X2
s

+
∂2

∂X2
a

+
∂2

∂Y2

)
+ V(Xs, Xa, Y),

V(Xs, Xa, Y) = Vs(Xs) + Va(Xa) + 2RX2
s X2

a

+
1
2

∑
ag

ω2(Y −
C

ω2
X2

s −
C ′

ω2
X2

a )2

+
1
2

∑
b3g

ω2(Y −
C

ω2
Xs)

2 +
1
2

∑
b2u

ω2(Y −
C

ω2
Xa)2

+
1
2

∑
b1u

ω2(Y −
C

ω2
XsXa)2. (23)
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Here the frequencies of the skeletal modes are assumed con-
stant and equal to their values ω at SP2. The profiles Vs,a(Xs,a)
along the tunneling coordinates are double-minimum poten-
tials that we assume to be quartic: V(X) = −aX2 + bX4, their
corresponding barrier heights and widths, along with the cou-
pling constant R, are directly found from the energies and
positions of the stationary points. The coupling constants C
of symmetry-allowed coupling terms XY are found from the
corresponding mode frequencies and displacements between
the stationary points. All parameters of this Hamiltonian can
thus be generated from the electronic structure and vibra-
tional force-field calculations at the stationary configurations,
as detailed elsewhere.39

As pointed out in the Introduction, the application of
instanton techniques to a multidimensional Hamiltonian with
two tunneling coordinates and two sets of (inequivalent) min-
ima is complicated by interference problems. Full diagonaliza-
tion is equally unfeasible at the present time, but since we are
mainly concerned with the dynamics of the two protons, we
will reduce the dimensionality by treating the skeletal modes
collectively through approximations.

As a first step, we identify the two modes with imaginary
frequency Xs,a with the collective proton coordinates xs,a of
Eqs. (2) and (3) through the relation xs,a =Xs,a/

√
2m∆x, where

m is the mass of an individual tunneling particle, i.e., proton
or deuteron, etc. We thus neglect the small contributions of
other atomic motions, which allows us to relate the calculated
profiles along Xs,a to the model profiles along xs,a in Eq. (3),
as shown in the Appendix. The motion along Xs,a is, how-
ever, subject to coupling to skeletal modes, the most important
coupling terms being of the form Yag X2

s and Yb1uXsXa, where
Y ag and Yb1u modes, are, respectively (predominantly), the +
and � combination of the hydrogen-bridge modes of the two
bonds and therefore the two modes most strongly coupled to
the proton motion. However, they have an opposite effect on the
collective tunneling of the two particles: the former shortens
the two bonds symmetrically and will thus facilitate concerted
transfer, while the latter breaks the symmetry of the two bonds
and will thus facilitate stepwise transfer. Therefore special care
must be exercised to choose approximations that are adequate
for the hydrogen-bridge modes. As follows from Eq. (23), to
treat these couplings properly, we would need a 4D effective
Hamiltonian with two proton and two hydrogen-bridge coordi-
nates. As this is not feasible at this time, we treat the two bridge
modes collectively and, since they are “slow” relative to the
proton motions, we choose the sudden approximation (SA), in
which they are “frozen” during the tunneling; we use the same
approximation for the remaining coupled skeletal modes, for
all of which the coupling is weak. This approximation is jus-
tified for porphycene, as seen from the frequencies listed in
Table II.

To implement this approach, the model of Eq. (1) first
needs to be generalized so that it includes skeletal as well as
proton motions. Applying the SA to the skeletal normal modes
then leads to an effective 2D Hamiltonian for the proton coor-
dinates of the form as in (1), with parameters renormalized so
as to include the effect of these modes on the proton motion.
A detailed account of this extension of the model will be
given elsewhere;20 in the Appendix we summarize the relations

TABLE II. Top part: Input parameters for the model Hamiltonian (1,3) for
double-proton tunneling in porphycene, in the sudden approximation (SA)
for the skeletal modes, adapted from the RI-CC2/cc-pVTZ calculations of
Ref. 40: ∆x in Å; G, D in dimensionless units; ∆Xs,a in Å amu1/2, all other
parameters in cm�1. Middle part: Energies of the stationary configurations, in
cm�1. Bottom part: Characteristic frequencies used to justify the SA: ω0,s/a

andω∗s/a are the calculated frequencies along the tunneling coordinates Xs,a in
the trans configuration and the SP2, respectively; ωag/b1u are the calculated

frequencies of the hydrogen-bridge modes ate the SP2, in cm�1.

Parameter SA model RI-CC2

U0 1050 . . .
∆x 0.29 . . .
G 0.22 . . .
D 0.15 . . .
ω0 1609 . . .
∆0 247 . . .
∆Xs/a . . . 0.495/0.398
Er,s/a 2198/906 . . .

EMIN 0 0
EINT 2174 . . .
ESP 2716 . . .
EMAX 3837 . . .

ω0,s/a . . . 2199/2716
ω∗s/a . . . i(1024/841)
ωag/b1u . . . 275/350

that define the renormalized model parameters through calcu-
lated quantities. All parameters involved are directly obtained
from the calculated potential discussed above and are given
by relations (A1)–(A8) of this Appendix. The resulting val-
ues for porphycene are collected in Table II. Using this set of
parameters, we then diagonalize the effective 2D Hamiltonian
(1); this yields the following eigenvalues for the lowest four
states, listed in cm�1: E+

I = 2096; E−II = 2104; E+
III = 3260, and

E−IV = 3491, where the subscripts ± indicate the symmetry of
the eigenstates.

As seen from Table II, the lowest pair of states is close
to but below INT, i.e., they occupy the tunneling region of
the complete 2D space. This is reflected in the properties of
their wave functions, which have the typical character of a
pair of states corresponding to trans-trans tunneling. The zero-
point tunneling splitting of 7.9 cm�1 is reasonably close to the
measured value of 4.4 cm�1, although not as close as the value
of 4.1 cm�1 obtained in the calculations of Ref. 30 with the cis
tunneling coordinate frozen, due to the less accurate treatment
of the skeletal modes.

On the other hand, the present 2D calculation provides
information on the tunneling mechanism; as shown in Fig. 6,
the probability flux distribution for the lowest pair of states
shows a single peak, indicating that the transfer is concerted.
Closer inspection shows that this flux is almost pure Gaussian,
which is typical for concerted transfer and means that step-
wise transfer makes no significant contribution (in this case
ρ= 0.98). As seen from the general properties of Hamiltonian
(1) discussed in Secs. II–IV, such a high level of concertedness
implies strong proton entanglement. Indeed, the confinement
measure (13) applied to the ground-state pair of states of por-
phycene Φ+

I and Φ−II yields C+
o = 0.97; C−o = 0.99, indicating

that at low temperature the two protons are highly entangled.
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Similar calculations apply also to the higher levels, but the
results are not easily interpreted. The second pair of states is
situated above both INT and SP of the potential, and only
slightly below SP2, implying that the corresponding wave
functions will be strongly delocalized. That this is indeed the
case is seen from the large tunneling splitting of 231 cm�1.
Such large splittings cannot be detected by the methods used
in Ref. 5 and indeed no other splitting is observed. The corre-
sponding flux distribution in the plane xa = 0 is similar to that
in Fig. 6(b). It offers no obvious interpretation of the transfer
mechanism.

Porphycene is a good example of how quantum mechanics
and symmetry lead to counter-intuitive results: the second pair
of states is located above both INT and SP, which means that
the particles “face” only the central barrier at MAX, the entire
“torus” around it being classically allowed. Nevertheless, the
± wave functions retain the character typical for cis-cis tun-
neling, with xa = 0 as dividing plane, despite the position of the
levels. Only much higher up the ladder of states this entangle-
ment disappears, and the wave functions obtain the character
of a “particle in a box.”

VI. THE ONE-INSTANTON APPROXIMATION

In Ref. 40 we showed that for porphycene the tunneling
splitting of the lowest trans level could be calculated with very
good accuracy if the cis tunneling coordinate was frozen. The
Gaussian form of the probability-flux distribution calculated in
Sec. IV confirmed that the two protons move synchronously,
i.e., as a single particle, which justifies to some extent the
elimination of the second tunneling coordinate in that earlier
study. It also justifies the use of the one-instanton approxi-
mation in Ref. 10, whereby the zero-point tunneling splitting
was related to the 1D instanton connecting the global minima
through the SP2, i.e., the concerted instanton of the present
study. Since it is easier to apply than 2D diagonalization, it is
useful to inquire under which conditions silencing of the sec-
ondary tunneling coordinate is a valid approximation. Clearly,
these will be conditions that minimize interference between
the different types of instantons possible in a potential with
two sets of minima (INT and MIN). This is likely to be the
case if these instantons are well separated energetically. A
measure for this separation is the energy gap between INT
and MIN; if this gap is of the order of a vibrational quan-
tum, we may reasonably assume that, similar to the case of
porphycene, the coupling parameter G is in the range where
the lowest pair of states is strongly localized in the trans
configuration, leading to a (predominantly) Gaussian flux dis-
tribution corresponding to concerted transfer. Whenever such
a situation prevails, one can safely estimate the zero-point tun-
neling splitting by means of calculations for the concerted
instanton.

Assuming such a situation, we evaluate below the zero-
point tunneling splitting in this one-instanton approach. We
start from the quasiclassical analogue of the 2D Hamiltonian,
in the SA for the skeletal modes, formulated in terms of the
real (mass-weighted) coordinates Xs,a,

H̄(Xs, Xa) =
1
2

Ẋ2
s +

1
2

Ẋ2
a + V̄(Xs, Xa). (24)

Here the potential is given by

V̄(Xs, Xa) = (V̄0,s/∆X4
s )(X2

s − ∆X2
s )2

+ (V̄0,a/∆X4
a )(X2

a − ∆X2
a )2 + 2R̄X2

s X2
a , (25)

where ∆Xs,a are the (half)widths of the barrier along Xs,a; V̄0,s

and V̄0,a are the corresponding barrier heights, and R̄ is the
coupling constant, all renormalized in the SA.

In the one-instanton approximation, the zero-point tunnel-
ing splitting ∆E0 for Hamiltonian (24) is given by the general
expression41

∆E0 = A exp(−S0
E), (26)

where S0
E is the Euclidean action at T = 0 (in units ~), i.e., the

action in the upside-down potential formulated in imaginary
time evaluated along the extremal trajectory (instanton),

S0
E =

∫ ∞
−∞

dτ H̄[Xs(τ), Xa(τ)]. (27)

The pre-exponential factor has the general form

A =
√

2S0
E/π ΓlΓt, (28)

where Γl is a “longitudinal” factor that depends on the shape of
the potential along the instanton path and Γt is a “transverse”
factor that reflects the effect of fluctuations of the instanton
due to coordinates transverse to it.

The instanton trajectory at T = 0 satisfies the equations
δSE/δXs = 0; δSE/δXa = 0, subject to the periodic conditions
Xs(∞)=Xs(0), Xa(∞)=Xa(0). For 2D Hamiltonians of type
(24) and (25), these equations always have a 1D solution Xa ≡ 0
corresponding to the concerted instanton, which at T = 0 is the
path connecting the trans minima through the SP2.10,15 The
Euclidean action (27) then equals the 1D action for tunneling
with energy E = 0 in the potential along the trans path,42

S0
E ≡

∫ ∆Xs

−∆Xs

dXs

√
2V̄(Xs); V̄(Xs) = (V̄0,s/∆X4

s )(X2
s − ∆X2

s )2,

(29)
which is easily found. The remaining quantity in Eq. (26) is
the prefactor, of which the longitudinal component is known
for potentials of quartic shape,43 but there is no general cost-
effective way to evaluate the transverse factor directly. There-
fore, we had earlier7–9 developed a method based on the
adiabatic approximation to the transverse modes, which renor-
malizes the potential along the instanton to a potential that is
vibrationally adiabatic (VA) over these modes. In the present
case, the coordinate Xa plays the role of a transverse mode, and
we evaluate the corresponding pre-factor Γt using the adiabatic
approximation. It is justified if at the minimum of the potential,
i.e., the trans configuration, the harmonic frequencyω0,a along
Xa is higher than its counterpart ω0,s along Xs; this is the case
for porphycene, as seen from Table II. The vibrationally adia-
batic potential is taken in the same quartic form as in Eq. (29),
but with a barrier height renormalized to V̄0,s −

1
2~ω0,a. The

final expression for the zero-point splittings∆E0 then takes the
familiar form for a quartic potential,43 namely,

∆E0 = (~ω0,s/π)
√

24πS0
E exp(−S0

E);

S0
E = (4/3)∆Xs

√
2(V̄0,s − ~ω0,a/2).

(30)
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The evaluation of the zero-point tunneling splitting asso-
ciated with the concerted instanton for the 2D Hamilto-
nian (24) is thereby reduced to a 1D tunneling calculation.
Since the result is in analytical form, it can always be used
for an order-of-magnitude estimate before undertaking a 2D
diagonalization.

We now apply this result to porphycene, using the rel-
evant parameters from Table II. This yields ∆E0 = 7.8 cm�1,
in close agreement with the exact diagonalization result of
Sec. V (7.9 cm�1). Correspondingly, the distribution of the
quasiclassical probability flux in the dividing plane Xs = 0 is
indistinguishable from the quantum distribution. Hence for
this molecule, the distribution of the probability flux as well
as the zero-point tunneling splitting is accurately represented
by the concerted instanton Xa ≡ 0 at T = 0. This is not a trivial
result since in the presence of a second set of minima, mul-
tiple instantons are possible for the 2D Hamiltonian in Eq.
(24) at T = 0, and the concerted instanton may or may not
be stable. The fact that it describes the zero-point tunneling
adequately is apparently due to the large energy gap between
the two sets of minima in the potential. In porphycene this
gap is two orders of magnitude larger than the trans tunnel-
ing splitting. This justifies the silencing of the cis tunneling
coordinate for this molecule and thus shows that the accu-
rate result for the zero-point splitting obtained in Ref. 40 is
not due to a compensation of errors but is a consequence
of the proper treatment of the coupling to skeletal modes. In
this case, the multidimensional Hamiltonian corresponding to
double-proton transfer turns into an imaginary-mode Hamilto-
nian for the remaining tunneling coordinate Xs and several of
the skeletal modes coupled to it, but with a position-dependent
mass of tunneling.7–9,40 Hence these calculations remain very
demanding computationally.

The question may arise whether the same conclusion
holds for the splitting of the upper pair of zero-point lev-
els. The answer is that it does not. Fig. 6(b) shows that
the distribution of the probability flux between these lev-
els does not resemble a Gaussian but has oscillatory behav-
ior, implying interference effects from multiple instantons.
Thus, in this case reduction to 1D concerted tunneling is not
possible.

VII. CONCLUSION

We have addressed the question whether two protons, each
moving between two equivalent minima, will move separately,
i.e., stepwise or together, i.e., concerted. To deal with this
question, which obviously depends on the degree of coupling
between the protons, we have introduced a new general method
for 2D proton tunneling, capable of providing a quantitative
answer. It is based on numerical diagonalization of a 2D Hamil-
tonian, with the proton-transfer coordinates treated as reaction
coordinates (imaginary normal modes), where the potential
supports two sets of inequivalent minima. This diagonaliza-
tion yields eigenvalues that can be compared with observed
tunneling splittings and eigenfunctions that can be used to ana-
lyze the tunneling mechanism. For this analysis, we introduce
a new method, based on the calculation of the probability flux
between states and its distribution in the dividing plane. From

this flux, the contribution of co-tunneling to the total transfer
process can be deduced quantitatively.

The central result of the study is that co-tunneling
is always present, and this is a consequence of quantum-
mechanical interference due to symmetry restrictions. In fact,
symmetry imposes entanglement of the protons even in the
absence of formal coupling. In the presence of coupling, it
forbids access to classically allowed regions even for totally
symmetric states. The imposed localization results in the com-
petition between tunneling mechanisms and in characteristic
patterns of tunneling splitting. Based on this localization, we
have introduced a new entanglement measure that shows that at
low temperatures the two protons are highly entangled. This
holds for a wide range of parameters of interest and can be
shown to stem from a basic quality of the 2D Hamiltonian (1),
namely, its isomorphism to that of a pair of two-level systems,
such as qubits or spins, subject to Ising-type coupling. This
isomorphism leads to many similarities in the properties of
the two Hamiltonians, but also exhibits some oddities, which
we report elsewhere.20 These general considerations allow us
to conclude that, for a wide range of parameters of interest, the
lowest pair of states of Hamiltonian (1,3) represents a perfect
example of highly entangled states in a system with continuous
variables.

To demonstrate the validity of the method, we have
applied it to porphycene, where the parameters of the model
Hamiltonian are derived in an unambiguous manner from
quantum-chemical calculations; specifically, the linearized
coupling between the proton-transfer modes and the skele-
tal normal modes is included in the sudden approximation,
which recognizes the fact that the most strongly coupled
modes are essentially static during the proton tunneling. We
have reproduced the observed tunneling splitting satisfacto-
rily and identified the transfer mechanism as concerted. We
have also shown that, under normal conditions, when they
are in the ground state, the porphycene protons are highly
entangled at low temperature, which may have interesting
applications.
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APPENDIX: RENORMALIZING THE 2D HAMILTONIAN

To renormalize the 2D Hamiltonian (1) so as to make it
applicable to a specific system, we modify the four parameters
by which it is determined, using the sudden approximation
(SA) for the coupled skeletal normal modes Y, taken to be
harmonic. Here we summarize the relations that define the
four modified parameters, to be identified by bar-over sym-
bols; detailed derivations will be presented elsewhere.20 In the
SA, only the potential energy surface is renormalized. The
modified barrier along Xs is given by
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V̄0,s = V0,s + Er,s; Er,s = (1/2)
∑

ag,b3g

(ωj∆Yj)
2, (A1)

where V0,s is the corresponding barrier height of the vibra-
tionally adiabatic (VA) potential (defined below), and Er,s the
total reorganization energy of the normal modes {Y j} of the
SP2 configuration along the trans path (i.e., modes of ag

and b3g symmetry). The same barrier height can be obtained
through the model parameters, which thereby yields for the
modified 1D barrier height

Ū0 = V̄0,s/2(1 − D)∆x4
s . (A2)

The remaining model parameters (∆x; G and D) are not
affected by the SA.20 To relate them to calculated quantities,
we write the VA potential, which is obtained from the cal-
culated potential (13) under the condition ∂V(Xs, Xa; Y)/∂ Y
= 0; this yields

VVA(Xs, Xa) = Vs(Xs)+Va(Xa)+2RX2
s X2

a ; V(X) = −aX2 + bX4,
(A3)

which is analogous to the model potential in Eq. (3), since
we identify the collective tunneling coordinates xs,a in Eq. (2)
with the modes with imaginary frequencies Xs,a through the
relations xs,a =Xs,a/

√
2m∆x. The model potential (3) can be

equated to this VA potential if the following condition is met:
V0,s/∆X4

s =V0,a/∆X4
a , where (V0,s;∆Xs) and (V0,a;∆Xa) are the

height and width of the barriers along the trans and cis tunnel-
ing coordinates, respectively. Then the model parameters are
directly obtained from these calculated positions and energies
of the stationary points, which define the coupling constant
R,

R =
{
V0,sV0,a ± [V0,sV0,aVSP(V0,a +VSP −V0,s)]1/2

V0,s −VSP

}
/∆X2

s ∆X2
a .

(A4)

The final relations that define the four model parameters
(Ū0;∆x; G and D) through calculated quantities are summa-
rized below: From the barrier widths, one readily obtains the
dipole coupling

G = (α − 1)/(α + 1); α = (∆Xs/∆Xa)2. (A5)

The parameter D of quadrupole coupling is obtained from Eq.
(A4) through the relations,

D = (R − 3)/(R + 1); R = R∆X2
s ∆X2

a /
√
V0,sV0,a. (A6)

The width of the 1D barrier is then obtained from the relation,

∆x = ∆Xs

√
(1 − D)/[2m(1 + G)]. (A7)

From relations (A5) and (A6), one obtains the width ∆xs of
the model potential in Eq. (3),

∆xs =
√

(1 + G)/(1 − D), (A8)

which, substituted in Eq. (A2), along with the value of D from
Eq. (A6), yields the last of the four parameters of the model,
the renormalized 1D barrier height Ū0.

Relations (A1)–(A8) provide a closed calculation scheme
to generate the model parameters in the SA through parameters
of the calculated potential. All input parameters involved are
obtained from electronic-structure and force-field calculations
at the stationary configurations, as detailed in Ref. 39. The
above scheme and relations were used to obtain the model
parameters of porphycene in the SA, listed in Table II and
applied in Sec. V.
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