4,723 research outputs found

    Medications and Breastfeeding

    Get PDF
    The aim of this chapter is to provide the reader with an understanding of the impact of the administration of medication to breast-feeding women and the key points related to this. The management and administration of medication is an essential skill for midwives. Equally, promoting breast feeding and supporting women’s infant feeding choices are essential skills for midwives. It is important that midwives and student midwives have knowledge around the use of medication during the lactating period in order to provide safe and effective care for breast-feeding women. This chapter will focus on the role of the midwife and student midwife in administration of medication to breast-feeding women and the key points related to this. As part of this process, it is necessary that midwives and student midwives understand the transfer of medication into breast milk and use the most up-to-date knowledge about medicines management and breast feeding. This is essential in order to provide accurate and evidence-based information to women, enabling them to make an informed choice (Nursing and Midwifery Council (NMC), 2018). This chapter will also explore some safe medication that can be used during the lactation period and common challenges arising while women breast feed and how these can be managed with and without the use of medicine

    Metamorphic Conditions of an Archean Core Complex in the Northern Wind River Range, Wyoming

    Get PDF
    The Archean granulite-facies rocks of the northern Wind River Range consist of extensive granitic orthogneisses and migmatites hosting banded iron formations, amphibolites, metapelites, metabasites, ultramafites and quartzites. Quantitative pressure and temperature estimates from inclusions within garnet porphyroblasts are 815±5O%C and 8±1 kb using equilibria buffered by the assemblages spinel-quartz-garnet-sillimanite and garnet-rutile-ilmenite-sillimanite-quartz. Pressure-temperature estimates from the groundmass core assemblages of the banded iron formations and hornblende granulites are 750 ±50 %C and 5·5 ± 1 kb using garnet-clinopyroxene, garnet-orthopyroxene, and two-pyroxene thermometry, and geobarometers based on the assemblages garnet-quartz-plagioclase-orthopyroxene and orthopyroxene-olivine-quartz. Rim compositions of the matrix minerals indicate nearly isobaric cooling from the conditions of 750 %C and 5-5 kb to < 600%C at 5 kb. Taken together, the P-T estimates from both the garnet inclusions and matrix assemblages are consistent with a clockwise P-T-t path for this terrane. Temperature estimates based on oxygen isotope thermometry in the banded iron formations vary systematically with the degree of visible late-stage deformation. There is no correlation between the isotopic temperature estimates and those from cation-based thermometers. The highest pressures and temperatures for the Wind River terrane are preserved by the inclusions in garnet porphyroblasts. The ability of these inclusions to preserve chemistries corresponding to higher pressures and temperatures is attributed to the combined effects of inclusion isolation and fixed inclusion volume within the garnet porphyroblasts. Cation-based thermometers in the groundmass preserve lower temperatures as a result of diffusional partial resetting. Isotopic thermometry will yield the lowest temperatures if there is even minor retrograde deformation. Geothermobarometry for the northern Wind River Archean terrane is consistent with a tectonic regime of doubly thickened crust. Peak metamorphic conditions preserved in the cores of the garnets are compatible with deep burial during the early stages of tectonism. Rapid to intermediate uplift due to erosion of the upper plate could explain the nearly isothermal decompression from 8·0 to 5-5 kb. The later, nearly isobaric, cooling path indicated by the rim compositions of the matrix minerals is consistent with relaxation of the elevated geother

    Negative index fishnet with nanopillars formed by direct nano-imprint lithography

    Get PDF
    In this paper we demonstrate the ability to fabricate fishnets by nanoimprinting directly into a pre-deposited three layer metal–dielectric–metal stack, enabling us to pattern large areas in two minutes. We have designed and fabricated two different fishnet structures of varying dimensions using this method and measured their resonant wavelengths in the near-infrared at 1.45 μm and 1.88 μm. An important by-product of directly imprinting into the metal–dielectric stack, without separation from the substrate, is the formation of rectangular nanopillars that sit within the rectangular apertures between the fishnet slabs. Simulations complement our measurements and suggest a negative refractive index real part with a magnitude of 1.6. Further simulations suggest that if the fishnet were to be detached from the supporting substrate a refractive index real part of 5 and FOM of 2.74 could be obtained

    Calcium channel α2δ1 proteins mediate trigeminal neuropathic pain states associated with aberrant excitatory synaptogenesis.

    Get PDF
    To investigate a potential mechanism underlying trigeminal nerve injury-induced orofacial hypersensitivity, we used a rat model of chronic constriction injury to the infraorbital nerve (CCI-ION) to study whether CCI-ION caused calcium channel α2δ1 (Cavα2δ1) protein dysregulation in trigeminal ganglia and associated spinal subnucleus caudalis and C1/C2 cervical dorsal spinal cord (Vc/C2). Furthermore, we studied whether this neuroplasticity contributed to spinal neuron sensitization and neuropathic pain states. CCI-ION caused orofacial hypersensitivity that correlated with Cavα2δ1 up-regulation in trigeminal ganglion neurons and Vc/C2. Blocking Cavα2δ1 with gabapentin, a ligand for the Cavα2δ1 proteins, or Cavα2δ1 antisense oligodeoxynucleotides led to a reversal of orofacial hypersensitivity, supporting an important role of Cavα2δ1 in orofacial pain processing. Importantly, increased Cavα2δ1 in Vc/C2 superficial dorsal horn was associated with increased excitatory synaptogenesis and increased frequency, but not the amplitude, of miniature excitatory postsynaptic currents in dorsal horn neurons that could be blocked by gabapentin. Thus, CCI-ION-induced Cavα2δ1 up-regulation may contribute to orofacial neuropathic pain states through abnormal excitatory synapse formation and enhanced presynaptic excitatory neurotransmitter release in Vc/C2

    The Oxygen Isotopic Composition of MIL 090001: A CR2 Chondrite with Abundant Refractory Inclusions

    Get PDF
    MIL 090001 is a large (>6 kg) carbonaceous chondrite that was classified as a member of the CV reduced subgroup (CVred) that was recovered during the 2009-2010 ANSMET field season [1]. Based on the abundance of refractory inclusions and the extent of aqueous alteration, Keller [2] suggested a CV2 classification. Here we report additional mineralogical and petrographic data for MIL 090001, its whole-rock oxygen isotopic composition and ion microprobe analyses of individual phases. The whole rock oxygen isotopic analyses show that MIL 090001 should be classified as a CR chondrite

    The Role of Solar Wind Hydrogen in Space Weathering: Insights from Laboratory-Irradiated Northwest Africa 12008

    Get PDF
    Micrometeoroid impacts, solar wind plasma interactions, and regolith gardening drive the complicated and nuanced mechanism of space weathering (or optical maturation); a process by which a materials optical properties are changed as a result of chemical and physical alterations at the surface of grains on airless bodies. Reddened slopes, attenuated absorption bands, and an overall reduction in albedo in the visible and near-IR wavelength ranges are primarily the result of native iron nanoparticle (npFe0) production within glassy rims that form from sputtering and vaporization. The sizes and abundance of these particles provide information about the relative surface exposure age of a particular grain. In addition, many studies have indicated that composition greatly affects the rate at which optical maturation occurs. Despite our understanding of how npFe0 affects optical signatures, the relative roles of micrometeoroid bombardment and solar wind interactions remains undetermined. To simulate the early effects of weathering by the solar wind and to determine thresholds for optical change with respect to a given mineral phase, we irradiated a fine-grained lunar basalt with 1 keV H+ to a fluence of 6.4 x 1016 H+ per sq.cm. Surface alterations within four phases have been evaluated using transmission electron microscopy (TEM). We found that for a given fluence of H+, the extent of damage acquired by each grain was dependent on its composition. No npFe(0) was produced in any of the phases evaluated in this study. These results are consistent with many previous studies conducted using ions of similar energy, but they also provide valuable information about the onset of space weathering and the role of the solar wind during the early stages of optical maturation

    The integration of optical interconnections on ceramic substrates

    Get PDF
    High heat conductivity and high heat capacity make ceramic substrates indispensable to the manufacture of Multi-Chip Modules (MCM) and power electronics. In this paper a detailed description of the integration process of optical lines on to ceramic substrates is presented. The manufacturing of microgrooves in ceramic substrates and the process of integration of optical fibres and active elements is described. Coupling active elements to optical fibre is also presented. Through such an integrated optical line a 4 Gbps signal was transmitted. © 2016 Elsevier B.V. All rights reserved

    Cadherin-26 (CDH26) regulates airway epithelial cell cytoskeletal structure and polarity.

    Get PDF
    Polarization of the airway epithelial cells (AECs) in the airway lumen is critical to the proper function of the mucociliary escalator and maintenance of lung health, but the cellular requirements for polarization of AECs are poorly understood. Using human AECs and cell lines, we demonstrate that cadherin-26 (CDH26) is abundantly expressed in differentiated AECs, localizes to the cell apices near ciliary membranes, and has functional cadherin domains with homotypic binding. We find a unique and non-redundant role for CDH26, previously uncharacterized in AECs, in regulation of cell-cell contact and cell integrity through maintaining cytoskeletal structures. Overexpression of CDH26 in cells with a fibroblastoid phenotype increases contact inhibition and promotes monolayer formation and cortical actin structures. CDH26 expression is also important for localization of planar cell polarity proteins. Knockdown of CDH26 in AECs results in loss of cortical actin and disruption of CRB3 and other proteins associated with apical polarity. Together, our findings uncover previously unrecognized functions for CDH26 in the maintenance of actin cytoskeleton and apicobasal polarity of AECs
    • …
    corecore