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ABSTRACT
The Archean granulite-facies rocks of the northern Wind River Range consist of extensive granitic

orthogneisses and migtnatites hosting banded iron formations, amphibolites, metapelites, metabasites,
ultramafites and quartzites. Quantitative pressure and temperature estimates from inclusions within
garnet porphyroblasts are 815±5O°C and 8±1 kb using equilibria buffered by the assemblages
spinel-quartz-garnet-sillimanite and garnet-rutile-ilmenite-sillimanite-quartz. Pressure-temper-
ature estimates from the groundmass core assemblages of the banded iron formations and hornblende
granulites are 750 ± 50 °C and 5-5 + 1 kb using garnet-clinopyroxene, garnet-orthopyroxene, and two-
pyroxene thermometry, and geobarometers based on the assemblages garnet-quartz-plagioclase-
orthopyroxene and orthopyroxene-olivine-quartz. Rim compositions of the matrix minerals indicate
nearly isobaric cooling from the conditions of 750 °C and 5-5 kb to < 600°C at 5 kb. Taken together,
the P-T estimates from both the garnet inclusions and matrix assemblages are consistent with a
clockwise P-T-t path for this terrane.

Temperature estimates based on oxygen isotope thermometry in the banded iron formations vary
systematically with the degree of visible late-stage deformation. There is no correlation between the
isotopic temperature estimates and those from cation-based thermometers. The highest pressures and
temperatures for the Wind River terrane are preserved by the inclusions in garnet porphyroblasts. The
ability of these inclusions to preserve chemistries corresponding to higher pressures and temperatures
is attributed to the combined effects of inclusion isolation and fixed inclusion volume within the garnet
porphyroblasts. Cation-based thermometers in the groundmass preserve lower temperatures as a
result of diffusional partial resetting. Isotopic thermometry will yield the lowest temperatures if there is
even minor retrograde deformation.

Geothermobarometry for the northern Wind River Archean terrane is consistent with a tectonic
regime of doubly thickened crust. Peak metamorphic conditions preserved in the cores of the garnets
are compatible with deep burial during the early stages of tectonism. Rapid to intermediate uplift due
to erosion of the upper plate could explain the nearly isothermal decompression from 80 to 5-5 kb. The
later, nearly isobaric, cooling path indicated by the rim compositions of the matrix minerals is
consistent with relaxation of the elevated geotherm.

INTRODUCTION

The study of Archean high-grade metamorphic terranes is one of the most direct methods
of evaluating conditions of early continental lower-crustal formation. Variations in the
pressure-temperature conditions during a metamorphic event are related to the tectonic and
heat-generating processes that were active during the metamorphism, and estimates of
pressures and temperatures over the course of the metamorphic event may be used to place
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limits on the associated tectonic processes (e.g., Tracy, 1982; Spear & Selverstone, 1983;
England & Thompson, 1984; Spear & Rumble, 1986; Bohlen, 1987). In most granulite-facies
terranes, chemical and textural information from the prograde history of the metamorphism
is lost during the subsequent annealing at peak to early retrograde conditions. As a result,
P-T information is generally only available over a small portion of the retrograde P-Jpath
(e.g., Bohlen, 1987). In this study, P-T information for the northern Wind River Range, an
Archean granulite-facies terrane, was obtained using quantitative geothermometry and
geobarometry. Variations in P and T during the course of the metamorphism were
constrained with mineral assemblages applicable to thermobarometric methods both in the
groundmass and in isolated mineral inclusions in garnet porphyroblasts. The Wind River
Range, located in western Wyoming (Fig. 1), represents one of the largest exposed
metamorphic core complexes in the western United States, comprising the western part of
the Archean Wyoming Province (Condie, 1976). The P-T conditions of this terrane add to
the available information for the early Archean evolution of the western North American
craton.

The Wind River Range consists of a doubly plunging northwest-trending anticline
(Branson & Branson, 1941; Berg, 1962; Smithson et al, 1980) with an exposed Archean core
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FIG. 1. Map of the Wind River Range. The outline delineates the Archean core complex. The field area in this study
is shaded. [See Worl et al. (1984) for greater detail.]
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~220 km long and 70 km wide. This core consists predominantly of granitic orthogneisses
and migmatites with blocks of quartzites, metapelites, banded iron formations, amphiboli-
tes, and ultramafites (Worl et al., 1984). Age estimates from conventional zircon U-Pb
techniques and the SHRIMP ion probe on single zircons range from 3200 to 2600 Ma for
pyroxene-bearing granodioritic gneisses (Aleinikoff et al, 1989). The orthogneisses are
intruded by granitic plutons dated at 2700 Ma (Bassett & Giletti, 1963; Naylor et al, 1970),
2630, and 2550 Ma (Stuckless et al, 1986). Large, unmetamorphosed mafic dikes crosscut all
other lithologies and have been dated at 1300-1900 Ma using K-Ar methods for whole-rock
samples (Condie et al, 1969) and pyroxene separates (Spall, 1971). The Precambrian core
was exposed during the Laramide orogeny along the Wind River fault, which parallels the
southwest margin of the range (Berg & Romberg, 1966; Smithson et al., 1980) (Fig. 1).

The topography of the Wind River Range is extremely variable, ranging from gently
rolling hills in the extreme south to high-elevation, deeply glaciated mountains in the north.
As a result, geologic investigations have been more extensive in the south (e.g., Bayley, 1963,
1965a, 1965b; Hodge & Worl, 1965; Pearson et al, 1971; Smithson & Ebens, 1971; Bayley
et al, 1973; Mitra & Frost, 1981; Cheang et al, 1985). In the central and northern part of the
Wind River Range, most work on the Precambrian portions has been at the reconnaissance
level (Baker, 1946; Oftendahl, 1953; Granger et al, 1971; Worl et al, 1984). Investigations of
the metamorphic conditions of the northern Wind River Range are limited (Perry, 1965;
Sharp & Essene, 1984; Sykes, 1985; Koesterer et al, 1987).

LITHOLOGIC UNITS IN THE NORTHERN WIND RIVER RANGE

The majority of mapping and sampling in this study was done in the area of the Downs
Mountain and Green River Lakes Quadrangles (U.S. Geological Survey 7-5 minute series
topographic maps). Felsic orthogneisses and migmatites comprise by far the majority of
exposed outcrop, but are not very useful for constraining pressures and temperatures of
metamorphism. The more informative 'supracrustal' iron formations, metapelites, and
amphibolites are very rare. The locations of these 'supracrustal' units in the present study
area have been given by Sharp (1988). Special attention was given to a large banded iron
formation (Worl, 1968) located at Rocking Horse Lake (Gannett Peak Quadrangle U.S.
Geological Survey Map, 1:100000 series, 1978). Mapping was carried out in the summers of
1982-1985 by Sharp. Essene, M. A. Cosca and G. R. Helffrich all participated in the
fieldwork. Mineralogy of representative samples in this study is given in Table 1.

Felsic orthogneisses and migmatites

The felsic gneisses range from granitic to tonalitic (Worl et al, 1984) and consist of quartz,
plagioclase, potassium feldspar, biotite, minor hornblende, and minor orthopyroxene or
cummingtonite. Mafic gneisses are generally preserved as stringers within the felsic gneisses,
and consist primarily of plagioclase and hornblende, with lesser amounts of biotite, quartz,
and rarely clinopyroxene and orthopyroxene. Large, angular blocks of mafic material are
also found in the orthogneisses.

Amphibolites

Amphibolite blocks and boudins are commonly found in association with banded iron
formations, metapelites, quartzites, and ultramafites. In the southern Wind River Range,
amphibolites and biotite schists are found interbedded with metapelites and iron formations



TABLE 1

Mineral assemblages for samples used in this study

ID no.

A16
A22
W24
W57
W58
W62
T2-E
T2-4
T2-6
T2-7
T2-9
T2-10
T7-6
T7-9
T7-12

W78
W121
WI40

W120
W123

Qz

X
X
X
X
X
X
X
X
X
X
X
X
X
X
X

X
X
X

X
X

Pg

X

X

X
X

X

X

X

X
X
X

X
X

Ksp

X

X

X

X
X

Gt

X
X
X
X
X
X
X
X
X

X
X
X

X
X
X

Opx

X
X
X
X
X
X
X
X
X
X
X
X
X
X
X

X
X

Cpx

X
X

X

X

X
X

X
X

01 Hnb

Banded iron formations

X

X

X
X
X
X

X
X

X

Metapelites

Amphibolites

X
X

Bl

X
X

X

X

X

X
X
X

Mt

X
X
X
X
X
X
X
X
X
X
X
X
X
X
X

llm

I
X
X

Crd

X
X
X

Si

I
I
X

Sp

I
I
X

Ru

I
I

N

o
X
70
•o
>

z
D
rn
!-
m

rn
Z
m

X = matrix phase, I = inclusion in garnet. Qz = quartz, Pg = plagioclase, Ksp•= potassium feldspar, Gt = garnet, Opx = orthopyroxene, Cpx = clinopyroxene, Ol = olivine, Hnb
= hornblende, Bt = biotite, Mt = magnetite, Ilm = ilmenite, Crd = cordierite, Si = sillimanite, Sp = spineL, Ru = rutile.
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(Bayley, 1963). The amphibolites in the northern Wind River Range consist predominantly
of hornblende, quartz, plagioclase, biotite, and potassium feldspar. Minor minerals include
garnet, orthopyroxene, clinopyroxene, magnetite, and monazite.

Banded iron formations

In the northern Wind River Range, banded iron formations are occasionally found as
small inclusions within the felsic orthogneiss. One dense cluster of iron formation pods is
found in the Downs Mountain Quadrangle surrounding Rocking Horse Lake (Worl, 1968;
Sharp, 1988). Sedimentary bedding is well preserved as alternating layers of quartz-rich and
pyroxene-magnetite-rich bands, and parallels the elongate direction of the boudins. The
layering in the hosting migmatites also parallels the elongate direction of the iron formation
lenses. Other smaller outcrops of iron formations are found between Clear Lake (Green
River Lakes Quadrangle) and Dads Lake (Downs Mountain Quadrangle) (Sharp, 1988).

The mineralogy of the iron formations consists predominantly of quartz, orthopyroxene,
and magnetite, with lesser amounts of garnet, clinopyroxene, olivine, plagioclase, potassium
feldspar, hornblende, cummingtonite, and biotite. Accessory minerals include zircon,
sphene, and monazite.

M etapelites

Metapelitic units are found throughout the range (e.g., Worl et al., 1984; Link et al, 1985;
Koesterer et al., 1987). In the northern part of the range, thin metapelitic units are associated
with the stringers of iron formations between Crescent Lake and Dads Lake (Sharp, 1988).
These units consist predominantly of quartz, plagioclase, potassium feldspar, cordierite,
biotite, garnet, and sillimanite. Additional minor phases include spinel, ilmenite, and zircon.
Rutile, quartz, sillimanite, spinel, cordierite, and plagioclase are occasionally preserved in
the cores of garnet and sillimanite porphyroblasts. Corundum is rarely found as inclusions in
spinel.

Ultramafites

Ultramafic bodies are found throughout the Wind River Range (e.g., Worl et al., 1984).
The ultramafic bodies in the northern part of the Range either preserve granulite-facies
assemblages or are completely hydrated to talc-, serpentine-, chlorite-, amphibole-rich
bodies. The anhydrous ultramafic rocks consist of olivine, orthopyroxene, clinoamphibole,
chromite, and magnetite, and preserve a granular, coarse-grained fabric.

Quartzites

Quartzites are well documented in the southern part of the Range (Bayley, 1963). In the
present field area, only minor quartzite has been identified in outcrop.

METAMORPHIC CONDITIONS FOR THE NORTHERN WIND RIVER RANGE

Various geothermometers and geobarometers were used to determine conditions of
metamorphism. The highest pressures and temperatures are recorded by mineral inclusions
within large garnet porphyroblasts. Mineral chemistries corresponding to lower
pressure-temperature conditions are preserved in the groundmass, or matrix mineral



246 Z. D. SHARP AND E.J. ESSENE

phases, which can be further divided into core and rim compositions. All mineral
compositions were determined with a Cameca CAMEBAX electron microprobe at the
University of Michigan with natural and synthetic minerals as standards and operating
conditions of 15 kV accelerating voltage and 10//A sample current. ZAF corrections were
made with Cameca (PAP) software. Mineral compositions used for thermobarometric
determinations in this study are presented in Tables 2-7.

Activity models
The following activity models were used to calculate pressure-temperature shifts from end-

member equilibria for the appropriate geothermometers and geobarometers:

(1) activities of almandine (FeAl2/3SiO4) and grossular (CaAl^SiO*) in garnet were
calculated using the mixing model of Ganguly & Saxena (1984) and the revised mixing
parameters of Anovitz & Essene (1987);

(2) anorthite activities (CaAl2Si2O8) in plagioclase were calculated following the proced-
ure of Newton et al. (1980);

(3) ferrosilite activities (Fe2Si2O6) in orthopyroxene were calculated using the procedure
of Davidson & Lindsley (1985);

(4) hercynite activities (FeAl2O4) in spinel were calculated assuming ideal mixing on two
sites; and

(5) fayalite activities (Fe2SiO4) in olivine were calculated assuming ideal mixing on two
sites.

Pressures and temperatures from garnet porphyroblast inclusions

Minerals enclosed in garnets during porphyroblastic growth become isolated from other
phases and may retain their entrapment orientation and/or bulk chemistry (e.g., Rosenfeld,
1970; Tracy, 1982). Therefore, these inclusions may potentially be used to constrain
metamorphic conditions at the time of their entrapment (e.g., Thompson et al., 1977) if it can
be demonstrated that the inclusions were in equilibrium at the time of entrapment and no
post-entrapment volume diffusion or solid-solid reactions occurred. In high-grade rocks,
inclusions trapped in garnet porphyroblasts at near-peak metamorphic conditions may
become chemically isolated, and record P-T information that may otherwise be lost during
cooling by the process of retrograde re-equilibration. Garnet porphyroblasts in the northern
Wind River Range are up to 10 cm in diameter and host a wide variety of minerals, including
quartz, plagioclase, biotite, cordierite, spinel, sillimanite, ilmenite, and rutile. Spinel,
ilmenite, and rutile are commonly found within the garnet porphyroblasts, but rarely as
groundmass phases. Presumably these minerals were consumed during retrogression
outside of the garnets, but were isolated from further reaction inside the garnets.

Mineral inclusions in the metapelitic garnets were used to estimate pressures and
temperatures during the growth of the garnet. Two equilibria are available from these
inclusions with different dP/dT slopes. These are

(1) hercynite-quartz-garnet-sillimanite and
(2) garnet-rutile-ilmenite-sillimanite-quartz.

The P-T intersection of these univariant equilibria corrected for solid-solution was assumed
to represent peak to near-peak metamorphic conditions of the northern Wind River Range.

Hercynite-quartz-garnet-sillimanite equilibria. The reaction

3FeAl2O4 + 5SiO2 = Fe3 Al2Si3O x 2 + 2Al2SiO5

hercynite quartz almandine sillimanite



TABLE 2

Representative oxide and olivine analyses

SiOj
TiO2

AI2O3

Cr2O3

Fe2O3

FeO
MnO
MgO
CaO
ZnO
Sum

Si
Ti
Al
Cr
Fe3 +

Fe2 +

Mn
Mg
Ca
Zn
Activity

TiOj
AI2O3

Fe2O3

FcO
Sum

Ti
Al
Fe3 +

Fe2 +

X(mt)

Normalization
»a(FeTiO3).

W78-2
sp

001
001

58-75
1-73
2-41

22-54
003
8-79
OOO
5-94

10O2I

OOO
OOO
1-91
004
005
052
OOO
036
OOO
012

050

T7-6
mt

3-95
1-49

59-12
34-75
99-31

Oil
007
1-71
111

085

: sp, ol,

W78-2
sp

001
OOO

58-99
1-83
2-42

22-20
000
8-70
OOO
6-44

10O59

OOO
OOO
1-91
004
005
051
OOO
036
OOO
013

049

77-9
ml

2-23
064

63-52
33-04
99-42

007
003
1-84
1O7

092

mt—three

W18-2
sp

001
001

59-37
1-79
2-92

22-78
003
907
001
5-32

101-31

OOO
OOO
1-91
004
006
052
OOO
037
OOO
Oil

050

77-/2
mt

1 63
1O7

64-45
32-68
99-83

005
005
1 86
105

093

W121-1
sp

001
009

6O59
1 26
OOO

22-65
001
8-60
OOO
6-30

99-51

OOO
OOO
1-96
003
OOO
052
OOO
035
OOO
013

051

cations; il—two cations.

W121-2
sp

OOO
001

59-33
1 93
096

23-27
001
7-65
OOO
6-97

10013

OOO
OOO
1-94
004
002
054
OOO
032
OOO
O14

052

W121-4
sp

002
002

58-42
3-24
047

2401
001
7-15
001
702

10038

OOO
OOO
1-92
007
001
056
OOO
033
OOO
014

054

Abbreviations as in

W121-4
sp

OOO
002

6O49
115
048

23-92
004
8O9
003
5-63

99-85

OOO
OOO
1-96
003
001
055
OOO
033
OOO
Oil

054

77-9-/
ol

3O65
OOO
OOO
OOO
OOO

67-92
061
214
O06

n.d.
101-37

101
OOO
OOO
OOO
OOO
1-87
002
010
OOO

n.d.

094

Table 1. a(fayalite) = a(Fe

77-/0
ol

3O67
OOO
OOO
002
OOO

67-71
045
1-91
003

n.d.
10O79

102
OOO
OOO
OOO
OOO
1-88
001
009
OOO

n.d.

095

2SiO4);

T7-9-3
ol

3099
OOO
OOO
OOO
OOO

67-17
071
2-15
005

n.d.
101O6

102
OOO
OOO
OOO
000
1 85
002
Oil
000

n.d.

094

a(hercynite)

W78-2
Urn

001
51-29
OOO
009
2-42

43-85
023
114
001
003

9907

OOO
098
OOO
OOO
005
093
OOO
004
OOO
OOO

091

= a(FeAl2O«);

W121-1
Urn

003
52-23
OOO
014
091

43-78
013
1-68
002
009

9901

OOO
099
OOO
OOO
002
092
OOO
006
OOO
OOO

091

a(ilmenite)

>

O
50
-aX
n
o
O
z
r-jw

o

O
•n
>
Z
>
O
X
m
>
Z

o
0?o
m
O
O

^0
t -
m
X

K)
•U



TABLE 3

Representative garnet analyses

SiO2

TiO2

A12O3

Cr2O3

Fe2O3

FeO
MnO
MgO
CaO
Sum
Si
Ti
Al
Cr
Fc3 +

Fe2 +

Mn
Mg
Ca

A'(Alm)
X(Py)
A-(Gr)
a(Alm)
a(Gr)

A22-2
core

37-55
000

19-59
002
1-62

3024
1-06
056
8-83

99-47

3-09
000
1-90
000
010
208
007
007
078

0693
0023
O260
0619
0324

A 2 2-2
rim

37-25

ooo
19-65
OOO
1-45

3006
076
060
9-08

98-85

307
OOO
1-91
OOO
009
207
005
007
080

0692
O023
0268
0621
0331

W24-1
core

37-46
003

2051
004
049

36-35
009
2-38
2-53

99-87

306
OOO
1-97
OOO
003
2-48
001
029
022

0827
0097
0073
0824
O063

W24-1
rim

3714
002

2051
003
065

36-53
016
203
2-94

10000

302
OOO
1-96
OOO
004
2-48
001
025
026

0827
0083
0087
0817
O077

W57-3
core

36-76
005

19-97
005
1-47

3108
042
086
8-64

99-30

2-99
OOO
1-91
OOO
009
211
003
010
075

O706
O033
0251
0638
0299

W57-3
rim

3710
003

2O32
005
099

32-09
054
057
8-35

10O03

300
OOO
1-94
OOO
006
217
004
007
072

0723
0023
O240
0654
0301

W58-1
core

37-79
OOO

2O42
005
049

34-48
047
1-43
4-94

100-06

309
000
1 97
OOO
003
2-36
003
018
043

0787
O060
0143
0753
0141

W58-1
rim

37-47
003

2O29
001
098

35-33
038
103
511

10O63

304
OOO
1-94
OOO
006
2-40
003
O12
044

0803
O040
0147
0761
0154

W58-4
core

36-91
OOO

21-02
006
067

35-22
045
1-51
5-35

10119

2-92
OOO
1 96
OOO
004
2-33
003
018
045

0779
O060
0151
0743
0152

W58-4
rim

36-82
001

2055
001
082

34-37
O44
100
610

100-11

2-97
OOO
1 95
OOO
005
2-32
003
012
053

0773
OO40
0177
0725
0194

N

a

70

>

z
a
m
m
VI
V>
m
Z
rn



TABLE 3 (Continued) m

SiO2

TiO2

A12O3

Cr2O3

Fe2O3

FeO
MnO
MgO
CaO
Sum

Si
Ti
Al
Cr
Fe3 +

Fe2 +

Mn
Mg
Ca

X(Alm)
-y(Py)
A-(Gr)
a(Alm)
o(Gr)

W62-4
core

37-43
0-00

20-80
001
067

35-37
0-21
3-70
217

100-36

2-99
0-00
1 96

ooo
004
2-36
O01
044
019

0787
0147
0063
0-802
0057

W62-4
rim

37-40
O01

2038
O03
049

35-65
018
2-74
2-26

9913

3-07
OOO
1-97
OOO
003
2-45
001
034
O20

0817
0113
0067
0821
0061

W78-2
core

38-78
001

21-54
009
OOO

31-50
083
7-39
0-99

10113

3-00
OOO
1 97
001
002
2-01
005
085
008

0672
0284
O027
0750
O030

W121-1
core

38-76
001

22-42
013
OOO

28-73
051
8-77
113

10O46

2-98
OOO
203
001
OOO
1 85
003
1-00
009

0623
0337
O030
0718
O040

W121-2
core

38-67
001

22-20
008
OOO

3O21
049
7-73
1-25

10O63

2-99
OOO
2-02
OOO
OOO
1-95
003
089
010

0657
O300
0034
0737
O041

W121-4
core

38-24
OOO

21-98
006
003

32-55
061
6-46
095

10088

2-98
OOO
2-02
OOO
OOO
212
004
075
008

0709
0251
O027
0775
O035

W140-1
core

37-85
004

2212
005
OOO

35-21
062
4-55
116

101-60

2-97
OOO
2-05
OOO
OOO
2-31
004
053
010

0775
0178
O034
0808
0040

W140-1
rim

36-31
002

21-39
004
OOO

36-15
071
3-32
1-48

99-41

2-94
OOO
2O4
OOO
OOO
2-44
005
040
013

0808
0132
0043
0824
0036

W140-2
core

38-29
OOO

21-85
001
OOO

35-35
066
4-70
1-01

101-88

3-00
OOO
201
OOO
OOO
2-31
004
055
008

0775
0185
0027
0815
0025

W140-2
rim

36-36
005

2O99
003
OOO

36-77
071
2-74
1-55

99-46

2-97
OOO
201
000
OOO
2-50
005
033
013

0831
OHO
0043
0839
O034

2
O
73
"V
X

n
o
o
z
a
H
o
z
1/3

o

73

o

z
o
o
73
m
o
o
2
•o
r
m
X



TABLE 3 (Continued)

SiO2

TiO2

A12O3

Cr2O3

Fe2O3

FeO
MeO
MgO
CaO
Sam

Si
Ti
Al
Cr
Fe3 +

Fe2 +

Mn
Mg
Ca
X(Alm)
Jf(Py)
A-(Gr)
a(Alm)
fl(Gr)

W140-5
core

37-92
005

22-20
(H)5
OOO

35-45
0-70
4-63
1-05

102-05

2-96
000
2-04
000
OOO
2-32
O05
0-54
0-09

0-773
0-180
O030
0-811
0027

T2-E
core

37-47
000

20-82
006
049

35-45
053
1-40
4-66

10088

302
000
1-97
OOO
O03
2-39
004
017
O40

0797
O057
0133
0769
0126

T2-E
rim

37-63
OOO

2114
OOO
OOO

3612
047
0-92
510

101-38

3O2
OOO
200
OOO
OOO
2-42
003
Oil
044

0807
O037
0147
0768
0149

T2-4-2
core

36-21
OOO

20-42
002
065

34-92
057
1-40
4-71

98-89

2-95
OOO
1-96
OOO
004
2-38
004
017
041

0793
0057
0137
0761
0132

T2-4-2
rim

36-64
OOO

2077
002
033

35-53
072
1-03
4-88

99-93

2-96
OOO
1-98
OOO
002
2-40
005
012
042

O803
0040
O140
0764
0142

T2-6-1
core

36-88
OOO

2O39
OOO
099

34-25
057
1-47
5-48

10004

2-98
OOO
1-94
OOO
006
2-31
004
018
047

O770
O060
0157
0732
O160

T2-6-I
rim

36-91
OOO

2024
005
098

33-72
056
O98
6-34

99-78

300
OOO
1-94
OOO
006
2-29
004
012
055

0763
0040
0183
0712
O207

T2-7-3
core

36-94
004

2014
OOO
1-31

3512
045
119
4-99

10O19

2-99
OOO
1-92
OOO
008
2-38
003
014
043

0799
0O47
0144
0762
0141

T2-7-3
rim

36-56
OOO

2048
004
099

35-44
O45
111
5 31

10037

2-94
OOO
1-94
OOO
006
2-38
003
013
046

0793
O043
0153
O752
0159

77-/2
core

37-57
001

2088
005
050

3615
052
115
4-62

101-44

3O1
OOO
1 97
OOO
003
2-42
004
014
040

O807
O047
0133
0781
0122

77-/2
rim

37-61
OOO

21-01
003
033

36-31
057
1O3
4-67

101-55

301
OOO
1-98
OOO
002
2-43
004
012
040

0813
O040
0134
0779
0131

N

X
>

>
z
o
tn
:-
m
C/5
C/3

m
Z
m

Normalization: five cations, excluding Si. Si total assumed as 30 for Fe3 + determination. Core and rim activities at 750 and 65O°C, except for W78 and
W121 at 800°C. a(Alm) = a(FeAl2/3SiO4), a(Gr) = a(CaAI2/jSiO4), Py = pyrope.
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TABLE 4 (Continued)

SiOj
TiO2

A12O3

FejOj
FeO
MnO
MgO
CaO
Na,O
Sum

Silv

Mn

Alvl

Ti
Cr
Fe 3 +

Fe 2 +

Mn
Mg
Ca
Na

X(?s)
X(En)
a(Fs)

72-£
core

47-86
001
053
OOO
OOO

4501
013
6-36
050
OOO

10O40

1 99
001
001
OOO
OOO
OOO
1 56
OOO
039
002
OOO

079
020
061

72-£
rim

48-40
OOO
038
OOO
000

44-75
017
6-59
049
OOO

10077

200
OOO
002
OOO
OOO
OOO
1-55
001
041
002
OOO

078
021
060

T2-4-2
core

47-51
OOO
044
002
020

4418
025
6 51
058
001

99-69

I 99
001
001
OOO
OOO
001
1-54
001
041
003
OOO

077
021
060

T2-4-2
rim

48-31
OOO
012
001
OOO

44-37
018
6-51
047
OOO

99-97

201
OOO
001
OOO
OOO
OOO
1-55
001
040
002
OOO

078
020
060

T2-6-1
core

48-53
004
036
003
006

43-69
021
7-24
060
OOO

10074

200
001
001
OOO
OOO
OOO
1-50
001
044
003
OOO

076
022
056

T2-6-1
rim

4809
001
032
OOO
1 43

42-97
022
7-68
049
OOO

10119

1-97
002
OOO
OOO
OOO
004
1-47
001
047
002
OOO

075
024
054

72-7-5
core

4812
006
036
006
OOO

45-48
015
5-96
069
OOO

10O88

200
OOO
001
OOO
OOO
000
1-58
001
037
003
OOO

079
019
062

72-7-5
rim

47-76
005
034
009
051

44-70
015
6-39
068
OOO

10O69

1-98
002
OOO
OOO
OOO
002
1 55
001
040
003
OOO

078
020
060

72-9
core

47-63
OOO
010
OOO
000

46-53
056
4-84
081
OOO

10O47

200
OOO
OOO
OOO
OOO
OOO
1-63
002
030
004
OOO

082
015
068

72-/0
core

48-39
OOO
Oil
OOO
OOO

46-23
043
4-89
087
001

10092

2O2
000
001
OOO
OOO
OOO
1-61
002
030
004
OOO

082
015
067

77-9
core

47-73
001
031
004
033

46-35
038
5-39
044
004

10103

1-99
001
000
OOO
000
001
1-61
001
033
002
OOO

082
017
066

77-/2
core

4810
002
053
007
005

4516
025
6-28
O57
004

101O6

1-99
001
001
OOO
OOO
OOO
1-56
001
039
003
OOO

078
020
061

77-/2
rim

48-64
007
029
004
OOO

4510
029
6-59
048
000

101-52

200
OOO
001
OOO
OOO
OOO
1 55
001
040
002
OOO

078
020
060

p
00

X

po
•v

o
m
_̂

in
00
00

mZ
m

Normalization: four cations. Core and rim activities a(Fs) = a(Fe2SijO6) at 750 and 65O°C, respectively. Fs = ferrosilite, En = enstatite, n.d. = not determined.



SiOj
AI2Oj
CaO
Na2O
K^O
Sum

Si
Al
Ca
Na
K

X(An)
o(An)

A22-2
core

57-59
27-84
9-33
607
008

10O91

2-56
1-46
O45
052
OOO

0464
0611

Normalization: five

W24-1
core

6093
23-27

5-34
1019
010

99-84

2-67
1-20
025
087
001

0221
0289

W58-1
core

57-46
25-20

7-32
911
Oil

99-20

2-55
1-32
035
078
001

O307
0422

cations. Calculated activities

TABLE 5

Representative plagioclase

W58-1
rim

58-48
24-69

708
8-82
017

99-23

2-60
1-29
034
076
001

O306
0474

of CaAl2:

W58-4
core

57-79
24-89

7-67
8-68
023

99-26

2-57
1-30
037
075
001

0327
0439

Si2O8 [a(An)]

W58-4
rim

57-84
25-06

7-47
8-59
013

99O9

2-58
1-32
O36
074
001

0324
0504

analyses

T2-E
core

6O03
24-64
6-90
7-35
031

99-23

2-70
1-31
033
064
002

0333
0448

in plagioclase at 750

T2-E
rim

58-92
24-37

7-23
7-62
020

98-33

2-67
1 30
035
067
001

O340
0524

and 650°C

T2-4-2
core

6O67
25-67
6-70
7-46
032

10O82

2-69
1-34
032
064
002

0327
0430

for core and

77-7.?
core

6O89
23-93

6-48
818
006

99-53

2-72
1-26
031
071
OOO

0304
0420

T7-12
rim

61-26
2406
6-32
815
003

99-82

2-73
1-26
030
070
OOO

O300
0478

rim, respectively.
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TABLE 6

Representative clinopyroxene analyses

SiO2

TiO2

A12O3

Cr 2O 3

Fe2O3

FeO
MnO
MgO
CaO
NajO
Sum

Silv

Al1*
Al"
Ti
Cr
Fe3 +

Fe2 +

Mn
Mg
Ca
Na

A16

49-37
OOO
1-08
OOO
O51

23-35
0-18
518

20-51
OOO

100-17

1-97
0-03
O02
OOO
OOO
O02
O78
O01
031
O88
000

A22-1

48-95
000
1-00
000
OOO

28-74
018
3-24

17-99
OOO

10O22

1-99
O01
004
OOO
OOO
000
098
001
O20
078
OOO

A22-2

48-71
004
1-30
OOO
2-35

23-37
019
419

2001
034

10O52

1-95
005
001
OOO
OOO
007
078
001
025
086
003

W57-2

48-40
005
121
001
1 56

24-51
Oil
3-82

19-91
020

99-81

1-95
005
001
OOO
OOO
005
083
OOO
023
086
002

W57-3

48-51
001
112
001
1-24

25-30
007
3-53

19-99
015

99-94

1-96
004
001
OOO
OOO
004
086
000
021
087
001

W120-2

51-37
017
1-67
004
2-91
902
038

12-46
21-75
044

10O24

1 93
007
001
OOO
OOO
008
028
001
070
088
003

W123

51-63
021
161
003
1-30

1065
028

12-56
2119
030

99-78

1 95
005
002
O01
000
004
034
001
071
086
002

Tl-4

51-08
n.d.
010
n.d.
OOO

24-60
038
4-98

2O61
n.d.

101-76

201
OOO
000
n.d.
n.d.
OOO
081
001
029
087
n.d.

77-9

49-48
001
015
001
1-77

24-68
024
4-26

2O29
014

101O4

1-97
001
OOO
000
000
005
082
001
025
087
001

77-/0

48-72
n.d.
020
n.d
000

26-20
021
4-41

2114
n.d.

10O88

1-94
001
OOO
n.d.
n.d.
000
087
001
026
090
n.d.

Normalization: four cations. All formulae are reintegrated from 100 to 200 spot analyses.

TABLE 7

Representative cordierite analyses

SiOj
TiO2

AI2O3

Cr 2 O 3

Fe 2O 3

FeO
MnO
MgO
CaO
Na2O
K2O
Sum

H2O, CO?
Si
Ti
Al
Cr
Fe3 +

Fe2 +

Mn
Mg
Ca
Ne
K

W121-1
late

48-47
004

3308
O01
000
3-72
005

1069
002
OOO
OOO

96-08

3-92

500
000
402
OOO
OOO
032
OOO
1-64
000
OOO
000

W121-4
incl

4902
002

32-64
OOO
1-42
3-62
002

1084
005
008
OOO

97-71

2-29

4-99
000
3-92
OOO
Oil
031
OOO
1-65
001
002
OOO

W121-4

48-70
OOO

32-47
001
1-43
4-59
006

1021
004
007
000

97-58

2-42

4-99
OOO
3-92
OOO
Oil
039
001
1-56
OOO
001
000

W140-1

48-43
001

33-31
000
1-69
5-65
005
8-95
005
024
OOO

98-38

1-62

4-95
OOO
401
000
013
048
OOO
1-36
001
005
000

W140-2

48-25
OOO

3304
OOO
O64
6-50
OOO
8-87
002
013
OOO

97-45

2-55

4-98
OOO
402
OOO
005
056
OOO
1 36
OOO
003
OOO

W140-S

47-93
OOO

3302
000
1-92
5-55
003
8-88
006
021
001

97-61

2-39

4-94
OOO
401
OOO
015
048
OOO
1-37
001
004
OOO

* H 2O, CO2 content not measured; calculated to allow totals to sum to 100%.
Normalization: 11 cations.
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FIG. 2. Back-scattered image of inclusions in garnet, (a) Inclusions of quartz (Qz) and hercynite (He) in garnet (Gt)
sample W78. Scale bar represents 100 /im. Zoning profile between the largest hercynite (center left) and quartz
inclusion is presented in Fig. 4. (b) Inclusions of ilmenite (Mm), rutile (Ru), and sillimanite (Si) in garnet sample

W121. Scale bar represents 10//m.

has an intermediate dP/dT slope and is well calibrated (Bohlen et al., 1986). Isolated
inclusions of the high-temperature products, hercynite and quartz, are occasionally found in
the cores of garnets in samples that are otherwise spinel-free (Fig. 2a). These two phases are
never found in contact with one another, presumably because they reacted to form garnet
and sillimanite during retrogression. Hercynite could only be preserved if it became isolated
from quartz by an early overgrowth of garnet. If quartz and hercynite were in equilibrium
during this early garnet growth, the mineral grains, once isolated, could preserve chemistries
corresponding to peak or near-peak metamorphic conditions. The spinel compositions
within a single thin-section are all very similar (Table 2), supporting the argument chat
equilibrium was achieved between the included phases during the time of their entrapment.
The lack of any gahnite-poor spinel outside of the garnet porphyroblasts is further evidence
that the spinel is a high-temperature phase that is preserved only because it is isolated from
quartz by the garnet overgrowths.
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The log10K isopleths for reaction (1) were calculated from the relation

AC - A C = \ AVdP-\
r, JP, Jr,

ASdT+RTlnK (2)

where A: = a(^1^e
Oi2)/a(^ r

A7 J
I
o

t;)3 and the activities of quartz and sillimanite are assumed
to be unity (Fig. 3). The sources of the thermodynamic data needed for calculations are given
in the caption of Fig. 3.

Minor retrograde Mg-Fe exchange over a distance of ~ 20 /im is observed in the garnet
away from spinel (Fig. 4) and no zoning is observed in the spinel. The lack of zoning in the
spinel indicates that cation diffusion in spinel is more rapid than in garnet, and that any
zoning profile that was present in the spinel at the blocking temperature of garnet was
annealed by further intracrystalline diffusion. The closure temperature for cation diffusion in
garnet can be approximated from available diffusion data for magnesium in garnet
measured over the temperature interval 750-900 °C (Cygan & Lasaga, 1985). The approxim-
ate penetration distance can be calculated from the equation (Crank, 1975)

x = J(ADt) (3)

where x = distance, D = diffusion coefficient at a particular temperature, and t = duration.

12

10

t ^ o

-llm ^ ,

- .-0.2 -^ Ky/

7 /If
~~~ ^/^'QzlB Qz / -

Wt/9
/ /1 r 1 / /1 ,

^7///

/ /Mm/

/5/oT,
600 700 800

T(°C)

9 0 0

FIG. 3. Log10K isopleths for reactions (1) (solid) and (6) (dashed). Stippled field represents the intersections of
reactions (1) and (6) adjusted for solid-solution in garnet and here/nite. Alm = almandine; Hc = hercynite; llm
= ilmenitc; Ky = kyanite; Ru = rutile; Si = sillimanite; Qz = quartz. Sources of thermodynamic data; almandine:
entropy (S>—1; volume (V}~2; expansivity (a)—2; compressibility (0}—2; fayalite: S— 3; V—A; a—5; 0—4, 5;
ferrosilite: S—6; V, a, /?—4; hercynite: S, V, a, fi—7; ilmenite: S, V—8; a—9; 0—10; kyanite: S, V—l I; a—12; 0—13;
quartz: S, V, a, 0—4; rutile: S, V—14; a—15; 0—16; silumanite S, V—\ 1; a—12; 0—13. References: (1) Metz et al.
(1983); (2) Anovi tz & Essehe (1987);i3) Robie et al. (1982); (4) Robinson et al. (1982);(5) Hazen (1976); (6) Bohlen et al.
(1983c); (7) Bohlen et al. (1986); (8) Ajiovitz et al. (1985); (9) assumed equal to hematite (data of Robinson et aln 1982);
(10) Birch (1966); (11) Robie & Hemingway (1984); (12) Winter & Ghose (1979); (13) Brace et al. (1969); (14) Robie

et al. (1978); (15)Meagher & Lager (1979); (16) Hazen & Finger (1981).
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FIG. 4. Zoning profile in garnet between spinel (at 0 /jra) and quartz (at 78 fim) in sample W78.

The observed penetration distance of 20 /im will take 10 Ma at a temperature of 480 °C
(log!o£)(m2/s)=-24-6) and 1 Ma at a temperature of 520°C (log lo0= -23-8). Altern-
atively, the closure temperature can be estimated from the following equation (Dodson,
1973):

(4)
RTr a2Qs

where Q = activation energy (239 kJ/mol), Do = pre-exponential factor (9-8x10 9 m2/s),
>4 = geometric factor (55 for a sphere, 87 for a plane), Tc = closure temperature (in °C),
a = grain radius and s = cooling rate. Assuming a linear cooling rate of l-10°C/Ma (Berger
& York, 1981; Cosca et al., 1991), a grain radius of 100 /mi and planar geometry at the
spinel-garnet interface, the closure temperature will be 520 and 480 °C for a cooling rate of
10 and 1 °C/Ma, respectively. The Mg-Fe self-diffusion rate in spinel must be significant
.below 500 °C in a slowly cooled metamorphic terrane.

To calculate maximum temperatures from the assemblage spinel + quartz, the original*,
spinel and garnet compositions must be determined. It was assumed that the garnet far from
the spinel interface did not significantly exchange with the spinel and represents the peak-
temperature composition. The spinel composition can then be calculated by adding the iron
lost from the spinel to the garnet during retrograde Mg-Fe exchange back into the spinel.
The Fe-Mg diffusion profile in the garnet surrounding the spinel was assumed to be
spherically symmetrical as both garnet and spinel are isometric. The Fe/Mg diffusion profile
in the garnet is measurable from the garnet interface to a distance of 14 /im from the interface
(Fig. 4). This profile was fitted with a simple third-order polynomial. The iron loss to the
garnet was then calculated by integrating concentric 'shells' of constant Fe excess (mole
fraction Fe/unit volume) in the garnet using spherical coordinates:

Excess Fe
)R JO JO

p 2-(a + bx + ex2 + <ix3)sin<£d0d<£dp. (5)
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R is the radius of the spinel (42 /im), a is the distance over which there is a measurable
diffusion profile (14 //m) and the term (a + bx + cx2 + dx3) is a third-order polynomial fitted
to the measured Fe/Mg diffusion profile in the garnet (a = 5-748; b= -0-01159; c = 0001208;
d= — 4174 x 10"5; R2 =0-99). The calculated peak-temperature spinel composition is only
0-009% more iron-rich than the measured composition. This small amount of exchange can
safely be ignored, as it represents a compositional change that is far less than the errors in the
microprobe determinations. However, for very small inclusions (< 10 um), this type of post-
entrapment volume diffusion correction should have a measurable effect and should not be
ignored.

Garnet-rutile-ilmenite-sillimanite-quartz equilibria. The reaction

Fe3 Al2Si3O12 + 3TiO2 = 3FeTiO3 + Al2SiO5 + 2SiO2

almandine rutile ilmenite sillimanite quartz (")

has a small positive dP/dT, making it an ideal geobarometer (Bohlen et al, 1983a). Rutile,
ilmenite, sillimanite, and quartz inclusions are all found within single garnet porphyroblasts
in the metapelitic units (Fig. 2b). No rutile has been found outside of garnet, however.
Because rutile and garnet define the high-pressure assemblage of reaction (6), rutile
inclusions in garnet will define a minimum pressure of equilibration at any temperature. For
garnet and rutile to react, a volume increase of 11-6% (at 850°C, 8 kb) is required. The
volume occupied by a rutile inclusion in garnet is fixed, and so no expansion can take place
during reaction. If the garnet remains rigid, then reaction (6) cannot take place. The
beginning of rutile breakdown in garnet must result in either a pressure increase in the
constant volume environment or the decrepitation of the garnet host. Large rutile grains will
exert a greater pressure than small grains on the garnet host by reaction (6). This will rupture
the garnet and allow rutile to completely react with garnet to form ilmenite, sillimanite, and
quartz, consistent with a lack of large rutile grains in the garnet porphyroblasts. The strength
of garnet at elevated temperatures and pressures is not well known, but the discovery of
coesite in garnet porphyroblasts and its preservation during retrogression suggests that
garnets can support large overpressures (Chopin, 1984). Therefore, rutile inclusions in garnet
may provide the only quantitative evidence of peak metamorphic pressures.

Calculations of the stability field of reaction (6) at reduced activities (constant \ogl0K)
were generated from the experimental reversals of the metastable extension of reaction (6) in
the kyanite field using the relation

I, 1 AVdP=-RT\nK (7)
Pi

where K = a("fTiOi)
3/a(f^""hSilOi:i), and rutile, sillimanite, and quartz are assumed to have

endmember compositions. The location of the kyanite equivalent of reaction (6) in the
kyanite field was calculated by first determining the free energy for reaction (6) at the
kyanite-sillimanite boundary and then calculating log10K isopleths in the kyanite field
using the AGracli0B value at the kyanite-sillimanite boundary as a starting point. Thermo-
dynamic data are given in the caption of Fig. 3. The calculated location of the logloK
isopleths (Fig. 3) are in agreement with those determined by Bohlen et al. (1983a).

Combined pressure-temperature estimates from inclusion minerals in garnet

Garnet compositions adjacent to rutile grains (Table 3) correspond to pressures of 8-0
±1-Okb at 800°C and 7 0 ± 10kb at 600°C (Fig. 3). These are minimum pressures of
equilibration, as the equilibrium location of reaction (6) is shifted to higher pressures for
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reduced activities of the phases ilmenite, sillimanite, and quartz. If the reduced activity
(assuming ideal mixing) of ilmenite is considered (Samples W78-2, W121-1, Table 2\
pressure estimates will be shifted to ~9kb at 800 °C. Measured garnet and spinel
compositions (Tables 2 and 3) yield a log10JC of 048 ±004 for reaction (1), corresponding to
700°C at 60kb and 790°C at 80kb (Fig. 3). The intersection of reactions (1) and (6),
corrected for solid-solution, are at 8± 1 kb and 815±5O°C.

Pressures and temperatures of matrix minerals
Temperatures and pressures for the matrix assemblages were estimated using well-

calibrated geothermometers and geobarometers. Different groundmass assemblages amen-
able to thermobarometric treatment were often found in different rock types. However, all
rock types are geographically and structurally related, and have almost certainly experi-
enced the same P-T conditions.

Garnet-pyroxene exchange thermometry

Temperature estimates were made on matrix assemblages from coexisting
garnet-clinopyroxene pairs in the iron formations and amphibolites, based on the calib-
rations of Ellis & Green (1979) and Pattison & Newton (1989). All clinopyroxenes have fine
orthopyroxene lamellae. Clinopyroxene compositions (Table 6) were determined by aver-
aging the sum of 40-100 analyses on a single grain with a beam rastered at 9/rni2.
Temperature estimates from Pattison & Newton (1989) are 30-80 °C lower than those of
Ellis & Green (1979) (Table 8). These lower temperatures are considered to be more reliable,
as the calibration of Pattison & Newton was made in the temperature range 700-1200 °C
and does not require a large extrapolation. The highest temperature estimate based on the
calibration of Pattison & Newton (740 °Q is considered to represent minimum temper-
atures, and garnet-clinopyroxene pairs recording lower temperature may have undergone
retrograde resetting during cooling (Pattison & Newton, 1989). Temperature estimates
based on rim compositions are approximately 100 °C lower than core temperatures
(Table 8).

Garnet-orthopyroxene pairs are common in the northern Wind River iron formations.
Temperatures were estimated for core and rim compositions of both garnet and orthopyrox-
ene based on the equation of Lee & Ganguly (1987) using a constant, non-zero Cp of
reaction. Core compositions average 710±70°C and rim compositions average 605±35°C
(Table 8). Actual uncertainties are probably greater than 50 °C, as the experimental
calibration of Lee & Ganguly had to be extrapolated 400 °C, but the temperature variations
between core and rim should be more precise.

Two-pyroxene solvus thermometry

Orthopyroxene and clinopyroxene are commonly found together in the iron formations
and less often in metabasites (hornblende granulites). Reintegrated clinopyroxene composi-
tions were used for temperature estimates with the solvus of Lindsley (1983). The results
yield scattered temperatures between 530 and 760°C (Table 8). The generally low temper-
atures are consistent with the concept of Ca-Mg-Fe2+ exchange during cooling (e.g.,
Essene, 1982). The use of the two-pyroxene thermometer of Davidson & Lindsley (1985)
results in temperature estimates approximately 25 CC above those of Lindsley (1983).
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TABLE 8

Temperature estimates from garnet-clinopyroxene, garnet-orthopyroxene, and two-pyroxene thermometry

Garnet Orthopyroxene ClinopyToxene
X{Ca) X(Fe) X(Mg) X(Fe) X(Mg) T(°Q X(Fe) X{Mg) TC*

s

A22-2
W24-1
W57-2
WS7-3
W58-1
W58-4
W62-4
W62-5
T2-E-6
T2-4-2
T2-4-7
T2-6-1
T2-7-3
T7-I2

A22-2
W24-1
W57-3
W58-1
W58-4
W62-4
T2-E-6
T2-4-2
T2-6-I
T2-7-3
T7-12

(core)
(core)
(core)
(core)
(core)
(core)
(core)
(core)
(core)
(core)
(core)
(core)
(core)
(core)

(rim)
(rim)
(rim)
(rim)
(rim)
(rim)
(rim)
(rim)
(rim)
(rim)
(rim)

0268
0093
0-247
0-251
0-143
O150
0063
0063
0133
0137
0133
0157
0143
O133

0260
0087
O240
0147
0177
0067
0130
0140
0183
0153
0134

0692
0817
0706
0706
0787
0777
0787
0793
0793
0793
0797
O770
0793
O807

0693
0827
0723
0800
0773
0817
O810
0800
0763
0793
0813

O023
O093
0033
0033
O060
0060
0147
0140
O060
O057
O057
O060
O047
O047

0023
O083
0023
0040
O040
0113
0047
O040
O040
0043
0041

0800
O670
0825
0840
0765
O780
0545
0555
0775
O770
0755
0750
O790
0787

0800
O670
O830
0775
O780
0545
0765
0775
0735
0775
0781

0165
O285
0145
0130
O205
0200
0415
O405
O200
O205
0255
O220
0185
O160

0165
0285
O140
0200
0200
0415
0210
0200
0235
0200
0204

530
650
730
800
710
745
585
580
720
675
615
680
645
665

525
590
575
535
565
470
560
535
495
575
590

O440
—

0415
O430

0440
—

O430

0110

0115
O105

OHO

O105

730

775
815

720

700

700

705
740

675

620

N

a
X

Z
D
rn

m
V)

m

•z
m

Opx/Cpx temperature estimates (based on Cpx compositions)
Sample X(Wollastonite) X(Enstatite) X(Ferrosilite) T(°C)

A16-4
A22-1
A22-2
W57-2
W57-3
W120-2
Tl-4
T2-9-6
T2-10

0428
0374
0388
0432
0432
O450
0448
0448
0432

0163
O105
0121
0123
0113
0390
0147
O130
0131

0409
0522
0491
0444
0455
0159
O405
0422
0437

630
760
720
580
580
630
530
530
580

• T("C) from Ellis & Green (1979).
t r(°C) from Pattison & Newton (1989).
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FIG. 5. Zoning profiles in garnet (a), orthopyroxene, (b), and plagioclsse-(c) in"W58. Profiles bounded by-the
following minerals: garnet by orthopyroxene; orthopyroxene by garnet; plagioclase by orthopyroxene.
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FIG. 6. Log10K isopleths for reaction (8). Connected circles and triangles represent core and rim compositions,
respectively, of individual samples corrected for solid-solutions. Gr=>grossular, Alm = almandine; Qz = quartz;

Aji = anorthite; Fs«ferrosilite.

Garnet-quartz-plagioclase-orthopyroxene barometry

The assemblage garnet-quartz-plagioclase-orthopyroxene is common in the iron forma-
tions of the northern Wind River Range. The reaction

Ca3 Al2Si3O12 + IFejA^SiaO, 2 + 3SiO2 = 3CaAl2Si2O8 + 6FeSiO3 (8)

grossular almandine quartz anorthite ferrosilite

is a sensitive geobarometer as a result of the large AKreact|On. The P-T location of this
reaction has been calculated by Bohlen et a\. (1983b), and revised by Anovitz & Essene (1987)
based on a modified solution model for the unmixed garnet. Core and rim analyses of all
phases (Tables 3-5) and zoning profiles of all phases in selected samples were determined
(Fig. 5). Pressure estimates from core compositions are 6-0-6-7 kb at 750°C. Pressure
estimates from rim compositions, correcting activities for temperature, are 5-0-5-7 kb at
600 °C. This is consistent with a nearly isobaric cooling path over this 150°C interval (Fig. 6),
as noted by Bohlen (1987) for other granulite terranes.

The reaction

Ferrosilite-fayalite-qnartz barometry

Fe2Si2O6 = Fe2SiO4+ SiO2

ferrosilite fayalite quartz (9)
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has been calibrated by Bohlen et al. (1980) and Bohlen & Boettcher (1981) for various
dilutions of Mg for Fe. The exchange reaction

Fe2Si2O6 + Mg2SiO4 = Mg2Si2O6 + Fe2SiO4

ferrosilite forsterite enstatite fayalite

(10)

buffers the Mg-Fe ratio between coexisting orthopyroxene and olivine at any temperature,
so that the composition of orthopyroxene coexisting with olivine and quartz uniquely
defines the pressure at a given temperature. Bohlen & Boettcher (1981) have determined
univariant curves of constant olivine and orthopyroxene composition for reaction (9).
Pressure estimates at 750 °C are 4-5 kb from the orthopyroxene isopleths and 6-5 kb from the
olivine isopleths. To evaluate the apparent discrepancy between these two calibrations,
log10K isopleths for reaction (9) were generated from the endmember reaction using
equation (7), where K = {aC^ilX,)} / {a(F

c™g"oZ)} • A t constant temperature, the calculated
location of log10 K isopleths at different pressures is a function only of the volume change of
reaction. Thermodynamic data are given in the caption of Fig. 3. The excess volume of
Mg-Fe exchange in olivine and pyroxene was assumed to be zero. Pressure estimates for
coexisting quartz, ferrosilite, and fayalite (Tables 2 and 4) are 4-8-5-4 kb (Fig. 7), lower than
the upper pressure estimates from reaction (8). The discrepancy between the pressure
estimates using the orthopyroxene and olivine isopleths of Bohlen & Boettcher (1981) may
be due to a lack of simultaneous equilibrium for reactions (9) and (10) during the
experimental runs. Nucleation of an orthopyroxene from olivine and quartz with a
composition only slightly different from the equilibrium composition dictated by reaction
(10) can dramatically affect the location of reaction (9) for different composition isopleths.
Alternatively, partial retrograde Fe-Mg diffusional exchange in slowly cooled natural
systems may occur by the temperature-sensitive reaction (10). Olivine, orthopyroxene, and
quartz would then be slightly out of equilibrium, if the pressure-sensitive reaction (9) is more

800 9 0 0

T(°C)

FIG. 7. Log10 K isopleths for reaction (9). Circles represent calculated pressures corrected for solid-solution.
Fa = fayalite; Qz = quartz; Fs = ferrosilite.
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sluggish at the retrograde temperatures. The large pressure shifts that result from only minor
changes in composition make the ferrosilite-fayalite-quartz geobarometer too sensitive for
accurate pressure estimates. Even minor cation exchange during cooling will dramatically
affect the calculated pressure using reaction (9). Until the above discrepancies are properly
evaluated, the log10K method based on the endmember reaction (Bohlen et al, 1980) is best
used as a check on other geobarometers.

Garnet-cordierite equilibria

The large partitioning of iron and magnesium between cordierite and garnet has been
used alone, or in conjunction with buffering reactions, as a method of constraining
metamorphic pressures and temperatures of cordierite-bearing assemblages. The accuracy
of these thermobarometers has been limited by the complex effect of structural water and
possible effects of order-disorder (e.g., Newton, 1972; Newton & Wood, 1979). As a result,
different experimental and thermodynamic stability relations have been determined involv-
ing cordierite stability, and the use of any equilibria involving cordierite can only be
regarded as semi-quantitative (Essene, 1989). Temperatures and pressures based on Mg-Fe
partitioning between cordierite and garnet and the reaction

3(Mg, Fe)2Al4Si5O18 = 2(Mg, Fe)3Al2Si3O12-t-4Al2SiO5 + 5SiO2 (11)
cordierite garnet sillimanite quartz

were made using various calibrations (Thompson, 1976; Newton & Wood, 1979; Martignole
& Sisi, 1981; Aranovich & Podlesskii, 1983; Perchuk & Lavrent'eva, 1983).

Temperature estimates based on Mg-Fe exchange are varied and generally low (Table 9).
Temperature estimates from core and rim compositions are 550-610 and ~ 430-585 °C. The
low apparent temperatures are consistent with continued Mg-Fe exchange between various
phases during retrogression. l a particular, the phases cordierite and biotite (ubiquitous in all
cordierite-bearing assemblages in the Wind River Range) probably continued to exchange
during cooling below the blocking temperature of garnet.

Combined P-T estimates were constrained based on reaction (11). Pressure and temper-
ature estimates are in the range 4-8-6-2 kb, 570-630 °C, for core compositions, and
~ 2-6-8-0 kb, 450-570°C, for rim compositions, except with the calibration of Newton &
Wood (1979), for which there are no P-r-a(H2O) conditions that correspond to the
Mg/(Mg + Fe2 +) ratios in both the garnet and cordierite (Table 9). The P-T estimates from
the rim compositions are especially varied. The extreme scatter may be due to the large
extrapolations required to use the garnet-cordierite thermometers and to the late Mg-Fe
exchange that is expected between garnet and cordierite.

Comparison with temperature estimates from isotope thermometry

Sharp et al. (1988) estimated metamorphic temperatures for the northern Wind River
Range based on the oxygen isotope fractionations between minerals in the banded iron
formations. They found that there was a spatially controlled variation in the isotopic
fractionations between minerals as a function of the proximity to the surrounding
orthogneisses, controlled by the degree of retrograde deformation of the sample. In this
study, cation-based thermometers have been applied to some of the same samples studied by
Sharp et al. (1988), to evaluate the relative retentivities of cation- and anion-based
thermometers.
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TABLE 9

Temperature estimates from garnet-cordierite equilibria and exchange thermometry

Sample

W121-4*
W140-1
W14O-2
W14O-5

W121-I*
WI21-4*
W140-1
W14O-2

(core)
(core)
(core)
(core)

Gate)
Gate)
(rim)
(rim)

X(Ca)

0027
O034
0027
0030

O027
O027
0043
0043

Garnet
We)

O709
0775
0775
0773

0623
O709
0808
0831

X(Mg)

0251
0178
0185
0180

0337
0251
0132
OHO

Cordierite
We)

0242
0297
O310
0312

0162
0203
0297
O310

\(Mg)

0751
0671
0682
0668

O840
0789
0671
0682

T\

570
550
550
560

530
515
480
430

n
610
580
600
600

585
550
495
460

PT3

630/6-5*
600/6-2
610/6-2
610/6-1

500/8-0*
550/7-0*
540/6-4
450/6-5

PT4

630/5-3*
620/4-7
630/6-3
640/4-8

570/5-7*
580/5-2*
530/3-3
480/26

PT5

570/5-8*
620/60*
620/6-0
630/6-2

570/6-2*
<55O*
550/4-5
<55O

* These samples have sillimanite only as an inclusion phase in garnet. Temperature estimates (°Q: Tl = Perchuk & Lavrent'eva (1983), T2
- Thompson (1976). P-restimates (°C/kb) based on reaction (11) of text for P(H2 O) = P(tot): PT3 •= Thompson (1976); PT4 = Aranovich &
Podlcsskii (1983); PT5 = Martignole & Sisi (1981) (at nH2O = 08); calibration of Newton & Wood (1979) extrapolates to r<400°C. All P-T
extrapolations below 600°C have a large uncertainty.
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TABLE 10

A comparison of cation and isotope geothermometers in banded iron formations

Sample

T2-E
T2-4
T2-10
T7-12
Tl-4
T2-9
T2-6

Contact
Distance

(m)

0-1
01
01
01
07
2-4
5-5

Opx/Cpx

T(°C)

580
—
530
530
—

Gt/Opx
core

T(°Q

720
675
—
650
—
—
680

rim
T(°Q

560
535
—
595
—

495

Qz-Mt

A

9-7
9-3
9-2
9-6

100
7-8
7-9

T(°Q

530
550
550
535
520
620
620

Qz-Opx

A

3-8
3-6

—
—

2-9

T(°q

580
600
—
—
—
—
700

Contact distance is the distance to the orthogneiss contact. Fractionation factors from Chiba et
al. (1989). Fractionation factor for quartz-diopside is used for A(Qz-Opx).

Temperature estimates from oxygen isotope thermometry in the banded iron formations
of the northern Wind River Range are always less than peak temperatures (Sharp et al.,
1988). Temperature estimates based on the isotopic fractionations between quartz, magnet-
ite, pyroxene, and garnet generally range from ~600°C in the central portion of the large
iron formation lenses to ~500°C closer to the contact with the surrounding orthogneisses.
For all samples, there is a one-to-one correspondence between the preserved fractionations
and the degree of deformation that is visible in thin-section. Samples that show more
deformation are closer to the orthogneiss contact and preserve lower temperatures.
Temperature estimates for the same samples have been made with garnet-orthopyroxene
and two-pyroxene thermometry. Additional isotopic measurements have been made with a
small-sample laser-based extraction technique (Sharp, 1990). In most cases, cation thermo-
metry yields higher temperatures than oxygen isotope thermometry (Table 10). Further-
more, cation thermometers appear to be less sensitive to minor retrograde deformation. The
oxygen isotope fractionations vary systematically with proximity to the surrounding
orthogneiss, but these variations are not observed in cation isotope thermometry. Clearly,
oxygen isotope thermometry cannot be used to estimate peak temperatures in a high-grade
metamorphic terrane that has undergone even minor retrograde deformation. The sensitiv-
ity of oxygen isotope thermometry to late-stage deformation can be used to constrain the
timing of the deformation, however. If a P-T-t path is obtained by other methods, the timing
of late deformation can be determined by oxygen isotope geothermometry.

METAMORPHIC EVOLUTION FOR THE NORTHERN WIND RIVER RANGE

The higher pressure-temperature data from the garnet inclusions almost certainly predate
the lower pressure-temperature data from the matrix minerals. What cannot be determined
with the available data is whether the P-Testimates from all assemblages are from the same
metamorphic event or two unrelated events. The radiometric data of Aleinikoffet al. (1989)
on a granodioritic gneiss indicate that there have been at least two episodes of zircon growth
(at 3-2 and 2-7 Ga). Aleinikoffet al. proposed granulite-facies events at 3-2 and 2-7 Ga, with
remnants of xenocrystic zircons as old as 3-8 Ga. The 3-2-Ga event is attributed to high-
grade metamorphism based only on zircon morphologies characteristic of high-grade
metamorphism, although some grains yielding 3-2 Ga have different morphologies. An
alternative explanation for the two sets of dates is that the 3-2-Ga zircons may represent the
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formation and emplacement age of the granodiorite, and not that of a high-grade
metamorphism. The isotopic data from a lower-grade equivalent metamorphic complex in
the Beartooth Mountains, Montana, part of the Wyoming Province, can be used to
understand the zircon data from the Wind River Range. Rb-Sr and Sm-Nd whole-rock ages
for a trondhjemitic gneiss component of the Beartooth Mountains are 3-55-3-26 Ga (Mogk
et al, 1988), which represents the formation age for the trondhjemite. Rb-Sr whole-rock,
Pb-Pb whole-rock, and U-Pb zircon ages from amphibolites, augen gneisses, granitoids,
and granites are clustered at 2-74-2-79 Ga (Mogk et al, 1988; Wooden & Mueller, 1988),
representing the ages of contemporaneous granitic intrusion and metamorphism. Cooling
below 400 °C took place at 2-56 Ga, as indicated by a U-Pb sphene date (Mogk et al, 1988).
These data are consistent with metamorphism at 2-75 Ga involving a magmatic component
and older continental crust (3-2-3-4 Ga). This would suggest that the zircon data of
Aleinikoff et al (1989) for the Wind River terrane may be interpreted in terms of a protracted
metamorphic event (2-7 Ga) involving older continental crust (3-2 Ga). It cannot be ruled
out, however, that two metamorphic events occurred, at 3-2 and 2-7 Ga.

Two explanations are therefore possible for the thermobarometric estimates of this study:

(1) the P-jHdata from the inclusions within garnet porphyroblasts are recording an early
metamorphism (3-2 Ga) and the matrix minerals preserve P-T data from a later meta-
morphism (2-7 Ga); or

(2) all P - r d a t a are from a single metamorphism (2-7 Ga), with the garnet porphyroblasts
recording peak metamorphic conditions and the matrix minerals recording retrograde
conditions.
The first possibility requires two separate metamorphic events and the second possibility is
compatible with either one or two metamorphisms.

If the P-T data from the inclusions within garnets are recording the first of two
metamorphisms, then these data represent the rare preservation of quantitative P-T data
from two separate, but similarly high-P-r events 500 Ma apart. Although it is common for
granulite-facies terranes to be preserved during subsequent greenschist or amphibolite
overprintings, the present study would be very unusual in that a portion of a granulite event
survived a later granulite-facies event.

If the calculated pressure-temperature estimates for all assemblages are related to a single,
long-lived event, then these data can be combined to constrain the high P-T-t conditions of
the northern Wind River Range metamorphism. Although all data are not from the same
lithologic units, they are found in close association, both structurally and geographically. It
is therefore valid to assume that the various P-T data are from a similar tectonothermal
domain and can be combined to constrain the P-T evolution of the northern Wind River
Range. Integrating the pressure-temperature estimates of the inclusions within garnet
porphyroblasts with those from core and rim matrix minerals results in a clockwise cooling
path (Fig. 8). Peak metamorphism occurred at high pressure and temperature (8 kb at
800 °C), fbllowed by a decompression to 5-6 kb with only a small temperature decrease.
Following this decompression, cooling from 750 to 650 °C occurred nearly isobarically.
These constraints place the Wind River samples within the sillimanite field for a significant
portion of their metamorphic history (Fig. 8), consistent with the presence of coarse
sillimanite and lack of kyanite.

Combining geothermometry and geobarometry from a group of zoned minerals using
independent reactions could yield erroneous results. In this study, Fe-Mg exchange
thermometry between garnet-orthopyroxene and garnet-clinopyroxene has been combined
with garnet-quartz-plagioclase-orthopyroxene geobarometry. The closure temperature for
the thermometers is controlled by Fe-Mg exchange, and the barometer also involves Ca-Al
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FIG. 8. Combined pressure-temperature estimates from inclusions in garnet and groundmass-matrix minerals.
'Garnet inclusions' are based on mineral equilibria from minerals included in garnet porphyroblasts; 'matrix core'
represent pressure-temperature estimates from core compositions of matrix minerals; 'matrix rim' are
pressure-temperature estimates based on nm compositions of the matrix minerals. Overall pressure-temperature

path is represented by arrow.

exchange (e.g., Bohlen, 1987). If these exchange rates are significantly different, the
temperatures and pressures based on rim compositions will not correspond to the same
retrograde conditions. Selverstone & Chamberlain (1990) proposed that the calculated
P-T path based on garnet-biotite exchange thermometry and garnet-sillimanite-
quartz-plagioclase barometry for several terranes yield erroneous isobaric cooling paths.
Their principal arguments were that

(1) the retrograde decompression reaction of garnet-sillimanite-quartz = cordierite is
commonly observed, and

(2) the feldspars are not zoned.

In the Wind River Range, there is no evidence of decompression reactions. In any event, the
presence of decompression reactions does not eliminate the possibility of isobaric cooling, as
long as the isobaric cooling occurred below the pressure of the decompression reaction.
Lack of Ca-zoning in feldspar and garnet could indeed be due to far slower exchange rates
than for Fe-Mg between garnet-pyroxene. The feldspar in the Wind River Range is zoned
(Fig. 5), and substantial Ca-zoning in garnets is observed in the Wind River samples and
other granulite terranes (Bohlen, 1987), suggesting that Ca exchange does occur. The
absolute closure temperatures for the different thermometers and barometers cannot be
determined, but even if a higher closure temperature is assumed for the geobarometers than
for the geothermometers, the resulting cooling path is still isobaric.

TECTONIC IMPLICATIONS

Various models based on petrologically constrained P-T paths (e.g., Thompson &
England, 1984; Bohlen, 1987) and numerical thermal calculations (e.g., England & Richard-
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son, 1977; Wells, 1980; England & Thompson, 1984) have been proposed to explain medium-
to high-grade metamorphism. Although a great many factors can contribute to the thermal
history of a given terrane, England & Thompson (1984) suggested that the major processes
that control the pressure-temperature trajectory of a terrane are total heat supply, rate and
duration of thickening and subsequent erosion, and the contribution of magmatic heat.
Heating of metamorphic terranes occurs by either

(1) deep burial associated with tectonic thickening (England & Richardson, 1977;
England & Thompson, 1984) or

(2) magmatic underplating and intrusion (Wells, 1980; Bohlen, 1987).

In the first case, pressure will increase substantially during early thickening, followed by a
temperature increase resulting from a combination of a relaxation of the geothermal
gradient and heat advection controlled by partial melting. Pressures will then decrease
during erosion until isostatic equilibrium is achieved. Additional cooling may occur nearly
isobarically. A clockwise P - Jpa th is followed. In the second case, early underplating causes
rapid heating, followed by increasing pressure after passage of magmas through the
terrane. A counterclockwise P-T path will result. In both cases, the final cooling will occur
with only a moderate pressure decrease. It is the prograde conditions that must be
constrained to distinguish these two possible scenarios.

In most high-grade metamorphic terranes, evidence of the early part of the metamorphic
history of a terrane is lost by subsequent re-equilibration at peak P-T or during the early
retrograde stages of metamorphism. As a result, there is insufficient evidence to dismiss
either of the models presented above. The thermobarometric data from the Wind River
Range, if taken as a single event, cover a large enough P-T range to identify the cooling path
followed by this terrane. The clockwise cooling path that is obtained is consistent with a
tectonic regime of crustal thickening. One expected feature of granulites formed by double
thickening is the generation of felsic magmas in the lower plate. These magmas are
characteristically absent from regional granulite terranes (Bohlen, 1987), but are abundant
in the northern Wind River Range.

Additional tectonic constraints can be placed on the Wind River Range through
correlations with lower-grade equivalents of the Wyoming Province. Mogk et al. (1988)
concluded that the Northern Snowy Block in the Beartooth Mountains, Montana,
underwent oceanic subduction along continental margins and eventual continental-
continental collision. The Northern Snowy Block and the northern Wind River Range have
remarkably similar lithologies and isotopic ages, and it is likely that they are both part of the
same orogen. The Wind River Range would therefore represent a higher-temperature, more
dismembered equivalent of the Northern Snowy Block. The clockwise P-T path for the
granulite-facies Wind River Range is compatible with the tectonic scenario presented by
Mogk et al. (1988) for the lower-grade Northern Snowy Block. It appears that the Wyoming
Province has undergone at least one large-scale Archean orogeny that may be correlated
between widely spaced present-day exposures. Further constraints on the timing and
duration of the orogenic events may be possible by combining U-Pb dates from zircons and
from metamorphic garnets (Mezger et al., 1989) with 40Ar/39Ar dates from hornblendes and
biotites.

DISCUSSION

Distinctly different temperature and pressure estimates are obtained from the different
systems investigated in this study. The highest pressures and temperatures are obtained from
mineral inclusions within zoned garnet porphyroblasts. Lower pressures and temperatures
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are preserved in the groundmass chemistries and, in general, the lowest temperatures are
obtained with oxygen isotope fractionations. The oxygen isotope thermometer is also the
most sensitive thermometer to deformationally induced resetting.

Compositions of mineral inclusions within zoned garnet porphyroblasts have previously
been used to estimate prograde metamorphic conditions in greenschist and amphibolite
terranes (e.g., Thompson et al, 1977; Tracy, 1982; Selverstone et al, 1984; St-Onge, 1984,
1987; Hodges & Silverberg, 1988), but much less attention has been paid to granulite
terranes. Inclusions in garnets may be the best source for determining prograde or peak
conditions in granulite-facies rocks. Garnet growth following the equilibration of the
mineral inclusions will retard further reaction and allow for preservation of chemical
information pertaining to the highest grades of metamorphism. The groundmass assem-
blages do not preserve the very high temperatures associated with the mineral inclusions in
the garnets. Even the cores of mineral grains appear to have undergone some diffusional
retrograde exchange. Other granulite terranes do preserve higher pressures and temper-
atures (Bohlen, 1987). Different tectonic regimes and prograde P-T paths are proposed for
these terranes. A common feature to both the Wind River terrane and those presented by
Bohlen is that the peak preserved pressures and temperatures are those that existed
immediately before the onset of isobaric cooling. The Wind River terrane passed through the
peak P-T field presented by Bohlen for other granulite-facies terranes, but unlike these
terranes, underwent decompression before isobaric cooling. If this decompression was a
long-lived process, then the observed groundmass resetting would be expected.

A present limitation of metamorphic petrology is the lack of a thorough understanding of
the diffusional exchange processes and rates that occur during retrogression. Although this
has hampered efforts to determine peak pressures and temperatures for high-grade
metamorphic terranes, it is precisely this partial resetting of chemical systems that allows the
more dynamic variations in pressure and temperature to be determined. As further
quantifications are made on rates of solid-solid reactions, diffusion, and the effects of
deformation and fluid presence on these rates, better determinations of P-T-t paths will be
made.
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