44 research outputs found

    Recessive mutations in the INS gene result in neonatal diabetes through reduced insulin biosynthesis

    Get PDF
    Heterozygous coding mutations in the INS gene that encodes preproinsulin were recently shown to be an important cause of permanent neonatal diabetes. These dominantly acting mutations prevent normal folding of proinsulin, which leads to beta-cell death through endoplasmic reticulum stress and apoptosis. We now report 10 different recessive INS mutations in 15 probands with neonatal diabetes. Functional studies showed that recessive mutations resulted in diabetes because of decreased insulin biosynthesis through distinct mechanisms, including gene deletion, lack of the translation initiation signal, and altered mRNA stability because of the disruption of a polyadenylation signal. A subset of recessive mutations caused abnormal INS transcription, including the deletion of the C1 and E1 cis regulatory elements, or three different single base-pair substitutions in a CC dinucleotide sequence located between E1 and A1 elements. In keeping with an earlier and more severe beta-cell defect, patients with recessive INS mutations had a lower birth weight (-3.2 SD score vs. -2.0 SD score) and were diagnosed earlier (median 1 week vs. 10 weeks) compared to those with dominant INS mutations. Mutations in the insulin gene can therefore result in neonatal diabetes as a result of two contrasting pathogenic mechanisms. Moreover, the recessively inherited mutations provide a genetic demonstration of the essential role of multiple sequence elements that regulate the biosynthesis of insulin in man

    Stereological analysis of liver biopsy histology sections as a reference standard for validating non-invasive liver fat fraction measurements by MRI

    Get PDF
    © 2016 St. Pierre et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Background and Aims: Validation of non-invasive methods of liver fat quantification requires a reference standard. However, using standard histopathology assessment of liver biopsies is problematical because of poor repeatability. We aimed to assess a stereological method of measuring volumetric liver fat fraction (VLFF) in liver biopsies and to use the method to validate a magnetic resonance imaging method for measurement of VLFF. Methods: VLFFs were measured in 59 subjects (1) by three independent analysts using a stereological point counting technique combined with the Delesse principle on liver biopsy histological sections and (2) by three independent analysts using the HepaFat-Scan® technique on magnetic resonance images of the liver. Bland Altman statistics and intraclass correlation (IC) were used to assess the repeatability of each method and the bias between the methods of liver fat fraction measurement. Results: Inter-analyst repeatability coefficients for the stereology and HepaFat-Scan® methods were 8.2 (95% CI 7.7-8.8)% and 2.4 (95% CI 2.2-2.5)% VLFF respectively. IC coefficients were 0.86 (95% CI 0.69-0.93) and 0.990 (95% CI 0.985-0.994) respectively. Small biases (=3.4%) were observable between two pairs of analysts using stereology while no significant biases were observable between any of the three pairs of analysts using Hepa-Fat-Scan®. A bias of 1.4±0.5% VLFF was observed between the HepaFat-Scan® method and the stereological method. Conclusions: Repeatability of the stereological method is superior to the previously reported performance of assessment of hepatic steatosis by histopathologists and is a suitable reference standard for validating non-invasive methods of measurement of VLFF

    MRI versus biopsy to assess NAFLD

    No full text

    Insulin protects islets from apoptosis via Pdx1 and specific changes in the human islet proteome

    No full text
    Insulin is both a hormone regulating energy metabolism and a growth factor. We and others have shown that physiological doses of insulin initiate complex signals in primary human and mouse β-cells, but the functional significance of insulin's effects on this cell type remains unclear. In the present study, the role of insulin in β-cell apoptosis was examined. Exogenous insulin completely prevented apoptosis induced by serum withdrawal when given at picomolar or low nanomolar concentrations but not at higher concentrations, indicating that physiological concentrations of insulin are antiapoptotic and that insulin signaling is self-limiting in islets. Insulin treatment was associated with the nuclear localization of Pdx1 and the prosurvival effects of insulin were largely absent in islets 50% deficient in Pdx1, providing direct evidence that Pdx1 is a signaling target of insulin. Physiological levels of insulin did not increase Akt phosphorylation, and the protective effects of insulin were only partially altered in islets lacking 80% of normal Akt activity, suggesting the presence of additional insulin-regulated antiapoptotic pathways. Proteomic analysis of insulin-treated human islets revealed significant changes in multiple proteins. Bridge-1, a Pdx1-binding partner and regulator of β-cell survival, was increased significantly at low insulin doses. Together, these data suggest that insulin can act as a master regulator of islet survival by regulating Pdx1
    corecore