2,060 research outputs found
Graphene nanoribbons with zigzag and armchair edges prepared by scanning tunneling microscope lithography on gold substrates
The properties of graphene nanoribbons are dependent on both the nanoribbon width and the crystallographic orientation of the edges. Scanning tunneling microscope lithography is a method which is able to create graphene nanoribbons with well defined edge orientation, having a width of a few nanometers. However, it has only been demonstrated on the top layer of graphite. In order to allow practical applications of this powerful lithography technique, it needs to be implemented on single layer graphene. We demonstrate the preparation of graphene nanoribbons with well defined crystallographic orientation on top of gold substrates. Our transfer and lithography approach brings one step closer the preparation of well defined graphene nanoribbons on arbitrary substrates for nanoelectronic applications
Mapping of functionalized regions on carbon nanotubes by scanning tunneling microscopy
Scanning tunneling microscopy (STM) gives us the opportunity to map the
surface of functionalized carbon nanotubes in an energy resolved manner and
with atomic precision. But this potential is largely untapped, mainly due to
sample stability issues which inhibit reliable measurements. Here we present a
simple and straightforward solution that makes away with this difficulty, by
incorporating the functionalized multiwalled carbon nanotubes (MWCNT) into a
few layer graphene - nanotube composite. This enabled us to measure energy
resolved tunneling conductance maps on the nanotubes, which shed light on the
level of doping, charge transfer between tube and functional groups and the
dependence of defect creation or functionalization on crystallographic
orientation.Comment: Keywords: functionalization, carbon nanotubes, few layer graphene,
STM, CITS, ST
Anomalies in thickness measurements of graphene and few layer graphite crystals by tapping mode atomic force microscopy
Atomic Force Microscopy (AFM) in the tapping (intermittent contact) mode is a
commonly used tool to measure the thickness of graphene and few layer graphene
(FLG) flakes on silicon oxide surfaces. It is a convenient tool to quickly
determine the thickness of individual FLG films. However, reports from
literature show a large variation of the measured thickness of graphene layers.
This paper is focused on the imaging mechanism of tapping mode AFM (TAFM) when
measuring graphene and FLG thickness and we show that at certain measurement
parameters significant deviations can be introduced in the measured thickness
of FLG flakes. An increase of as much as 1 nm can be observed in the measured
height of FLG crystallites, when using an improperly chosen range of free
amplitude values of the tapping cantilever. We present comparative Raman
spectroscopy and TAFM measurements on selected single and multilayer graphene
films, based on which we suggest ways to correctly measure graphene and FLG
thickness using TAFM
The sine-Gordon model with integrable defects revisited
Application of our algebraic approach to Liouville integrable defects is
proposed for the sine-Gordon model. Integrability of the model is ensured by
the underlying classical r-matrix algebra. The first local integrals of motion
are identified together with the corresponding Lax pairs. Continuity conditions
imposed on the time components of the entailed Lax pairs give rise to the
sewing conditions on the defect point consistent with Liouville integrability.Comment: 24 pages Latex. Minor modifications, added comment
Recommended from our members
Clinical relevance of breast cancer-related genes as potential biomarkers for oral squamous cell carcinoma
Background: Squamous cell carcinoma of the oral cavity (OSCC) is a common cancer form with relatively low 5-year survival rates, due partially to late detection and lack of complementary molecular markers as targets for treatment. Molecular profiling of head and neck cancer has revealed biological similarities with basal-like breast and lung carcinoma. Recently, we showed that 16 genes were consistently altered in invasive breast tumors displaying varying degrees of aggressiveness. Methods: To extend our findings from breast cancer to another cancer type with similar characteristics, we performed an integrative analysis of transcriptomic and proteomic data to evaluate the prognostic significance of the 16 putative breast cancer-related biomarkers in OSCC using independent microarray datasets and immunohistochemistry. Predictive models for disease-specific (DSS) and/or overall survival (OS) were calculated for each marker using Cox proportional hazards models. Results: We found that CBX2, SCUBE2, and STK32B protein expression were associated with important clinicopathological features for OSCC (peritumoral inflammatory infiltration, metastatic spread to the cervical lymph nodes, and tumor size). Consequently, SCUBE2 and STK32B are involved in the hedgehog signaling pathway which plays a pivotal role in metastasis and angiogenesis in cancer. In addition, CNTNAP2 and S100A8 protein expression were correlated with DSS and OS, respectively. Conclusions: Taken together, these candidates and the hedgehog signaling pathway may be putative targets for drug development and clinical management of OSCC patients
- …