2,060 research outputs found

    Válogatott bibliográfia

    Get PDF

    Graphene nanoribbons with zigzag and armchair edges prepared by scanning tunneling microscope lithography on gold substrates

    Get PDF
    The properties of graphene nanoribbons are dependent on both the nanoribbon width and the crystallographic orientation of the edges. Scanning tunneling microscope lithography is a method which is able to create graphene nanoribbons with well defined edge orientation, having a width of a few nanometers. However, it has only been demonstrated on the top layer of graphite. In order to allow practical applications of this powerful lithography technique, it needs to be implemented on single layer graphene. We demonstrate the preparation of graphene nanoribbons with well defined crystallographic orientation on top of gold substrates. Our transfer and lithography approach brings one step closer the preparation of well defined graphene nanoribbons on arbitrary substrates for nanoelectronic applications

    Mapping of functionalized regions on carbon nanotubes by scanning tunneling microscopy

    Full text link
    Scanning tunneling microscopy (STM) gives us the opportunity to map the surface of functionalized carbon nanotubes in an energy resolved manner and with atomic precision. But this potential is largely untapped, mainly due to sample stability issues which inhibit reliable measurements. Here we present a simple and straightforward solution that makes away with this difficulty, by incorporating the functionalized multiwalled carbon nanotubes (MWCNT) into a few layer graphene - nanotube composite. This enabled us to measure energy resolved tunneling conductance maps on the nanotubes, which shed light on the level of doping, charge transfer between tube and functional groups and the dependence of defect creation or functionalization on crystallographic orientation.Comment: Keywords: functionalization, carbon nanotubes, few layer graphene, STM, CITS, ST

    Anomalies in thickness measurements of graphene and few layer graphite crystals by tapping mode atomic force microscopy

    Full text link
    Atomic Force Microscopy (AFM) in the tapping (intermittent contact) mode is a commonly used tool to measure the thickness of graphene and few layer graphene (FLG) flakes on silicon oxide surfaces. It is a convenient tool to quickly determine the thickness of individual FLG films. However, reports from literature show a large variation of the measured thickness of graphene layers. This paper is focused on the imaging mechanism of tapping mode AFM (TAFM) when measuring graphene and FLG thickness and we show that at certain measurement parameters significant deviations can be introduced in the measured thickness of FLG flakes. An increase of as much as 1 nm can be observed in the measured height of FLG crystallites, when using an improperly chosen range of free amplitude values of the tapping cantilever. We present comparative Raman spectroscopy and TAFM measurements on selected single and multilayer graphene films, based on which we suggest ways to correctly measure graphene and FLG thickness using TAFM

    The sine-Gordon model with integrable defects revisited

    Get PDF
    Application of our algebraic approach to Liouville integrable defects is proposed for the sine-Gordon model. Integrability of the model is ensured by the underlying classical r-matrix algebra. The first local integrals of motion are identified together with the corresponding Lax pairs. Continuity conditions imposed on the time components of the entailed Lax pairs give rise to the sewing conditions on the defect point consistent with Liouville integrability.Comment: 24 pages Latex. Minor modifications, added comment
    corecore