221 research outputs found

    Reversible modifications of linear dispersion - graphene between boron nitride monolayers

    Full text link
    Electronic properties of the graphene layer sandwiched between two hexagonal boron nitride sheets have been studied using the first-principles calculations and the minimal tight-binding model. It is shown that for the ABC-stacked structure in the absence of external field the bands are linear in the vicinity of the Dirac points as in the case of single-layer graphene. For certain atomic configuration, the electric field effect allows opening of a band gap of over 230 meV. We believe that this mechanism of energy gap tuning could significantly improve the characteristics of graphene-based field-effect transistors and pave the way for future electronic applications.Comment: 5 pages, v2 with slightly modified introduction and summar

    Plasmodynamic synthesis of product based on aluminum in the oxygen atmosphere of a reactor-chamber

    Get PDF
    In this paper, the possibility is shown to synthesize oxide aluminum using a high-speed electro discharge plasma jet. The synthesized products were characterized by X-Ray diffractometry and transmission electron microscopy

    The C-Terminal Domain of the MutL Homolog from Neisseria gonorrhoeae Forms an Inverted Homodimer

    Get PDF
    The mismatch repair (MMR) pathway serves to maintain the integrity of the genome by removing mispaired bases from the newly synthesized strand. In E. coli, MutS, MutL and MutH coordinate to discriminate the daughter strand through a mechanism involving lack of methylation on the new strand. This facilitates the creation of a nick by MutH in the daughter strand to initiate mismatch repair. Many bacteria and eukaryotes, including humans, do not possess a homolog of MutH. Although the exact strategy for strand discrimination in these organisms is yet to be ascertained, the required nicking endonuclease activity is resident in the C-terminal domain of MutL. This activity is dependent on the integrity of a conserved metal binding motif. Unlike their eukaryotic counterparts, MutL in bacteria like Neisseria exist in the form of a homodimer. Even though this homodimer would possess two active sites, it still acts a nicking endonuclease. Here, we present the crystal structure of the C-terminal domain (CTD) of the MutL homolog of Neisseria gonorrhoeae (NgoL) determined to a resolution of 2.4 Å. The structure shows that the metal binding motif exists in a helical configuration and that four of the six conserved motifs in the MutL family, including the metal binding site, localize together to form a composite active site. NgoL-CTD exists in the form of an elongated inverted homodimer stabilized by a hydrophobic interface rich in leucines. The inverted arrangement places the two composite active sites in each subunit on opposite lateral sides of the homodimer. Such an arrangement raises the possibility that one of the active sites is occluded due to interaction of NgoL with other protein factors involved in MMR. The presentation of only one active site to substrate DNA will ensure that nicking of only one strand occurs to prevent inadvertent and deleterious double stranded cleavage

    Значимые личности в истории города Юрги Кемеровской области

    Get PDF
    В данной статье впервые даётся авторский взгляд на то, кого из юргинцев можно отнести к наиболее значимым личностям в истории города Юрги Кемеровской области. Предлагается перечень лиц с короткой характеристикой причины их включения. Делается вывод о малоизученности многих вопросов этой темы и её научной перспективности

    Generation of a High Number of Healthy Erythroid Cells from Gene-Edited Pyruvate Kinase Deficiency Patient-Specific Induced Pluripotent Stem Cells

    Get PDF
    Pyruvate kinase deficiency (PKD) is a rare erythroid metabolic disease caused by mutations in the PKLR gene. Erythrocytes from PKD patients show an energetic imbalance causing chronic non-spherocytic hemolytic anemia, as pyruvate kinase defects impair ATP production in erythrocytes. We generated PKD induced pluripotent stem cells (PKDiPSCs) from peripheral blood mononuclear cells (PB-MNCs) of PKD patients by non-integrative Sendai viral vectors. PKDiPSCs were gene edited to integrate a partial codon-optimized R-type pyruvate kinase cDNA in the second intron of the PKLR gene by TALEN-mediated homologous recombination (HR). Notably, we found allele specificity of HR led by the presence of a single-nucleotide polymorphism. High numbers of erythroid cells derived from gene-edited PKDiPSCs showed correction of the energetic imbalance, providing an approach to correct metabolic erythroid diseases and demonstrating the practicality of this approach to generate the large cell numbers required for comprehensive biochemical and metabolic erythroid analyses.info:eu-repo/semantics/publishedVersio

    A Statistically Rigorous Method for Determining Antigenic Switching Networks

    Get PDF
    Many vector-borne pathogens rely on antigenic variation to prolong infections and increase their likelihood of onward transmission. This immune evasion strategy often involves mutually exclusive switching between members of gene families that encode functionally similar but antigenically different variants during the course of a single infection. Studies of different pathogens have suggested that switching between variant genes is non-random and that genes have intrinsic probabilities of being activated or silenced. These factors could create a hierarchy of gene expression with important implications for both infection dynamics and the acquisition of protective immunity. Inferring complete switching networks from gene transcription data is problematic, however, because of the high dimensionality of the system and uncertainty in the data. Here we present a statistically rigorous method for analysing temporal gene transcription data to reconstruct an underlying switching network. Using artificially generated transcription profiles together with in vitro var gene transcript data from two Plasmodium falciparum laboratory strains, we show that instead of relying on data from long-term parasite cultures, accuracy can be greatly improved by using transcription time courses of several parasite populations from the same isolate, each starting with different variant distributions. The method further provides explicit indications about the reliability of the resulting networks and can thus be used to test competing hypotheses with regards to the underlying switching pathways. Our results demonstrate that antigenic switch pathways can be determined reliably from short gene transcription profiles assessing multiple time points, even when subject to moderate levels of experimental error. This should yield important new information about switching patterns in antigenically variable organisms and might help to shed light on the molecular basis of antigenic variation

    Tridimensional model structure and patterns of molecular evolution of Pepino mosaic virus TGBp3 protein

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Pepino mosaic virus </it>(PepMV) is considered one of the most dangerous pathogens infecting tomatoes worldwide. The virus is highly diverse and four distinct genotypes, as well as inter-strain recombinants, have already been described. The isolates display a wide range on symptoms on infected plant species, ranging from mild mosaic to severe necrosis. However, little is known about the mechanisms and pattern of PepMV molecular evolution and about the role of individual proteins in host-pathogen interactions.</p> <p>Methods</p> <p>The nucleotide sequences of the triple gene block 3 (TGB3) from PepMV isolates varying in symptomatology and geographic origin have been analyzed. The modes and patterns of molecular evolution of the TGBp3 protein were investigated by evaluating the selective constraints to which particular amino acid residues have been subjected during the course of diversification. The tridimensional structure of TGBp3 protein has been modeled <it>de novo </it>using the Rosetta algorithm. The correlation between symptoms development and location of specific amino acids residues was analyzed.</p> <p>Results</p> <p>The results have shown that TGBp3 has been evolving mainly under the action of purifying selection operating on several amino acid sites, thus highlighting its functional role during PepMV infection. Interestingly, amino acid 67, which has been previously shown to be a necrosis determinant, was found to be under positive selection.</p> <p>Conclusions</p> <p>Identification of diverse selection events in TGB3p3 will help unraveling its biological functions and is essential to an understanding of the evolutionary constraints exerted on the <it>Potexvirus </it>genome. The estimated tridimensional structure of TGBp3 will serve as a platform for further sequence, structural and function analysis and will stimulate new experimental advances.</p
    corecore