884 research outputs found

    Photoproduction of Positive Mesons from Hydrogen: Results

    Get PDF
    The center-of-mass differential cross section for photoproduction of positive pions from hydrogen has been measured by the methods described in the two previous abstracts, in the angular range 40° to 150°, for photons from 220 to 475 Mev. (Photon energies refer to the Laboratory System.) Results obtained by the two methods are in essential agreement. At 90°, dσ/dω has a maximum of 2.7 X 10^(-29) cm^2/sterad near 280 Mev and falls by a factor 5 at 450 Mev. The maximum in the excitation curve is even more pronounced at larger angles, but less pronounced at smaller ones. At 40° (c.m.) the peak occurs near 350 Mev and at 450 Mev the cross section has decreased only to 0.7 the, peak value. Angular distributions in the center-of-mass system show a marked assymetry about 90°, which changes character from low energy to high. Below 325 Mev, there ii a backward maximum, whereas above 375 Mev, there is a forward maximum. The total cross section reaches a maximum near 290 Mev and decreases by about a factor 3 at 450 Mev. The results below 300 Mev agree with the data already reported from Berkeley and Cornell

    View-tolerant face recognition and Hebbian learning imply mirror-symmetric neural tuning to head orientation

    Get PDF
    The primate brain contains a hierarchy of visual areas, dubbed the ventral stream, which rapidly computes object representations that are both specific for object identity and relatively robust against identity-preserving transformations like depth-rotations. Current computational models of object recognition, including recent deep learning networks, generate these properties through a hierarchy of alternating selectivity-increasing filtering and tolerance-increasing pooling operations, similar to simple-complex cells operations. While simulations of these models recapitulate the ventral stream's progression from early view-specific to late view-tolerant representations, they fail to generate the most salient property of the intermediate representation for faces found in the brain: mirror-symmetric tuning of the neural population to head orientation. Here we prove that a class of hierarchical architectures and a broad set of biologically plausible learning rules can provide approximate invariance at the top level of the network. While most of the learning rules do not yield mirror-symmetry in the mid-level representations, we characterize a specific biologically-plausible Hebb-type learning rule that is guaranteed to generate mirror-symmetric tuning to faces tuning at intermediate levels of the architecture

    Rigid Supersymmetric Theories in Curved Superspace

    Full text link
    We present a uniform treatment of rigid supersymmetric field theories in a curved spacetime M\mathcal{M}, focusing on four-dimensional theories with four supercharges. Our discussion is significantly simpler than earlier treatments, because we use classical background values of the auxiliary fields in the supergravity multiplet. We demonstrate our procedure using several examples. For M=AdS4\mathcal{M}=AdS_4 we reproduce the known results in the literature. A supersymmetric Lagrangian for M=S4\mathcal{M}=\mathbb{S}^4 exists, but unless the field theory is conformal, it is not reflection positive. We derive the Lagrangian for M=S3×R\mathcal{M}=\mathbb{S}^3\times \mathbb{R} and note that the time direction R\mathbb{R} can be rotated to Euclidean signature and be compactified to §1\S^1 only when the theory has a continuous R-symmetry. The partition function on M=S3ק1\mathcal{M}=\mathbb{S}^3\times \S^1 is independent of the parameters of the flat space theory and depends holomorphically on some complex background gauge fields. We also consider R-invariant N=2\mathcal{N}=2 theories on S3\mathbb{S}^3 and clarify a few points about them.Comment: 26 pages, uses harvmac; v2 with added reference

    The Two Faces of Anomaly Mediation

    Get PDF
    Anomaly mediation is a ubiquitous source of supersymmetry (SUSY) breaking which appears in almost every theory of supergravity. In this paper, we show that anomaly mediation really consists of two physically distinct phenomena, which we dub "gravitino mediation" and "Kahler mediation". Gravitino mediation arises from minimally uplifting SUSY anti-de Sitter (AdS) space to Minkowski space, generating soft masses proportional to the gravitino mass. Kahler mediation arises when visible sector fields have linear couplings to SUSY breaking in the Kahler potential, generating soft masses proportional to beta function coefficients. In the literature, these two phenomena are lumped together under the name "anomaly mediation", but here we demonstrate that they can be physically disentangled by measuring associated couplings to the goldstino. In particular, we use the example of gaugino soft masses to show that gravitino mediation generates soft masses without corresponding goldstino couplings. This result naively violates the goldstino equivalence theorem but is in fact necessary for supercurrent conservation in AdS space. Since gravitino mediation persists even when the visible sector is sequestered from SUSY breaking, we can use the absence of goldstino couplings as an unambiguous definition of sequestering.Comment: 21 pages, 1 table; v2, references added, extended discussion in introduction and appendix; v3, JHEP versio

    BICEP2 / Keck Array V: Measurements of B-mode Polarization at Degree Angular Scales and 150 GHz by the Keck Array

    Full text link
    The Keck Array is a system of cosmic microwave background (CMB) polarimeters, each similar to the BICEP2 experiment. In this paper we report results from the 2012 and 2013 observing seasons, during which the Keck Array consisted of five receivers all operating in the same (150 GHz) frequency band and observing field as BICEP2. We again find an excess of B-mode power over the lensed-Λ\LambdaCDM expectation of >5σ> 5 \sigma in the range 30<<15030 < \ell < 150 and confirm that this is not due to systematics using jackknife tests and simulations based on detailed calibration measurements. In map difference and spectral difference tests these new data are shown to be consistent with BICEP2. Finally, we combine the maps from the two experiments to produce final Q and U maps which have a depth of 57 nK deg (3.4 μ\muK arcmin) over an effective area of 400 deg2^2 for an equivalent survey weight of 250,000 μ\muK2^{-2}. The final BB band powers have noise uncertainty a factor of 2.3 times better than the previous results, and a significance of detection of excess power of >6σ> 6\sigma.Comment: 13 pages, 9 figure

    BICEP2 / Keck Array VIII: Measurement of gravitational lensing from large-scale B-mode polarization

    Get PDF
    We present measurements of polarization lensing using the 150 GHz maps which include all data taken by the BICEP2 & Keck Array CMB polarization experiments up to and including the 2014 observing season (BK14). Despite their modest angular resolution (0.5\sim 0.5^\circ), the excellent sensitivity (3μ\sim 3\muK-arcmin) of these maps makes it possible to directly reconstruct the lensing potential using only information at larger angular scales (700\ell\leq 700). From the auto-spectrum of the reconstructed potential we measure an amplitude of the spectrum to be ALϕϕ=1.15±0.36A^{\phi\phi}_{\rm L}=1.15\pm 0.36 (Planck Λ\LambdaCDM prediction corresponds to ALϕϕ=1A^{\phi\phi}_{\rm L}=1), and reject the no-lensing hypothesis at 5.8σ\sigma, which is the highest significance achieved to date using an EB lensing estimator. Taking the cross-spectrum of the reconstructed potential with the Planck 2015 lensing map yields ALϕϕ=1.13±0.20A^{\phi\phi}_{\rm L}=1.13\pm 0.20. These direct measurements of ALϕϕA^{\phi\phi}_{\rm L} are consistent with the Λ\LambdaCDM cosmology, and with that derived from the previously reported BK14 B-mode auto-spectrum (ALBB=1.20±0.17A^{\rm BB}_{\rm L}=1.20\pm 0.17). We perform a series of null tests and consistency checks to show that these results are robust against systematics and are insensitive to analysis choices. These results unambiguously demonstrate that the B-modes previously reported by BICEP / Keck at intermediate angular scales (150350150\lesssim\ell\lesssim 350) are dominated by gravitational lensing. The good agreement between the lensing amplitudes obtained from the lensing reconstruction and B-mode spectrum starts to place constraints on any alternative cosmological sources of B-modes at these angular scales.Comment: 12 pages, 8 figure

    Hepatitis C virus vaccine candidates inducing protective neutralizing antibodies

    Get PDF
    With more than 150 million chronically infected people, hepatitis C virus (HCV) remains a substantial global health burden. Direct-acting antivirals have dramatically improved viral cure. However, limited access to therapy, late stage detection of infection and re-infection following cure illustrate the need for a vaccine for global control of infection. Vaccines with induction of neutralizing antibodies (nAbs) have been shown to protect successfully against infections by multiple viruses and are currently developed for HCV. Areas covered: Here we review the progress towards the development of vaccines aiming to confer protection against chronic HCV infection by inducing broadly nAbs. The understanding or viral immune evasion in infected patients, the development of novel model systems and the recent structural characterization of viral envelope glycoprotein E2 has markedly advanced our understanding of the molecular mechanisms of virus neutralization with the concomitant development of several vaccine candidates. Expert commentary: While HCV vaccine development remains challenged by the high viral diversity and immune evasion, marked progress in HCV research has advanced vaccine design. Several vaccine candidates have shown robust induction of nAbs in animal models and humans. Randomized clinical trials are the next step to assess their clinical efficacy for protection against chronic infection

    Structural Basis for Broad Neutralization of Hepatitis C Virus Quasispecies

    Get PDF
    Monoclonal antibodies directed against hepatitis C virus (HCV) E2 protein can neutralize cell-cultured HCV and pseudoparticles expressing envelopes derived from multiple HCV subtypes. For example, based on antibody blocking experiments and alanine scanning mutagenesis, it was proposed that the AR3B monoclonal antibody recognized a discontinuous conformational epitope comprised of amino acid residues 396–424, 436–447, and 523–540 of HCV E2 envelope protein. Intriguingly, one of these segments (436–447) overlapped with hypervariable region 3 (HVR3), a domain that exhibited significant intrahost and interhost genetic diversity. To reconcile these observations, amino-acid sequence variability was examined and homology-based structural modelling of E2 based on tick-borne encephalitis virus (TBEV) E protein was performed based on 413 HCV sequences derived from 18 subjects with chronic hepatitis C. Here we report that despite a high degree of amino-acid sequence variability, the three-dimensional structure of E2 is remarkably conserved, suggesting broad recognition of structural determinants rather than specific residues. Regions 396–424 and 523–540 were largely exposed and in close spatial proximity at the surface of E2. In contrast, region 436–447, which overlaps with HVR3, was >35 Å away, and estimates of buried surface were inconsistent with HVR3 being part of the AR3B binding interface. High-throughput structural analysis of HCV quasispecies could facilitate the development of novel vaccines that target conserved structural features of HCV envelope and elicit neutralizing antibody responses that are less vulnerable to viral escape
    corecore