302 research outputs found

    A CME based channel estimation approach for MIMO-OFDM systems

    Full text link
    A pilot-assisted, conditional model-order estimation (CME) based channel estimation algorithm is presented. The algorithm is proposed for MIMO-OFDM systems and can detect both channel frequency responses and number of multi-path taps. In addition, the modified CME estimator is also verified its capacity in determining the nonzero taps. The performance of the proposed approach is compared to the popular minimum description length (MDL) algorithm for estimation of the number of channel paths, by means of simulation in the context of a 2x2 MIMO-OFDM transceiver system. Result indicates that the new algorithm is superior in channel order estimation to the MDL algorithm in MMO-OFDM system over a noisy frequency selective fading channel. ©2009 IEEE

    The future of food security, environments and livelihoods in Western Africa. Four socio-economic scenarios. CCAFS Working Paper no. 130.

    Get PDF
    This working paper examines the development of regional socioeconomic scenarios for West Africa’s development, agriculture, food security and climate impacts. We present four globally consistent regional scenarios framed and outlined by regional experts who crafted narratives and determined key drivers of change. Stakeholders identified the type of actors driving change and the timeline of strategic planning as the most uncertain and most relevant factors of change affecting food security, livelihoods and environments in the region. The scenarios were linked to the IPCC community’s global Shared Socio-economic Pathways(SSPs) and quantified using two agricultural economic models, GLOBIOM and IMPACT, in interaction with drivers outlined by the SSPs and guided by semi-quantitative information from the stakeholders. The quantification of the scenarios has provided additional insights into the possible development of Western Africa in the context of a global economy as well as how the agricultural sector may be affected by climate change. The scenarios process highlights the need to combine socio-economic and climate scenarios, to base these scenarios in regional expertise, and ways to make scenarios useful for policy design. The objective of this working paper is to provide scenarios for future regional development for West Africa on the future of food security, environment, and rural livelihoods as well as offer details of the multi-stakeholder scenarios development process. Using both qualitative and quantitative scenarios we provide insights into the possible development of West Africa as well as a scalable framework for regional decision makers and the scientific community to use scenarios to build and test policies to make them more robust in the face of future uncertainty. In these scenarios, strong economic development increases food security and agricultural development. Increased crop and livestock productivity may lead to an expansion of agricultural areas within the region but productivity improvements may reduce the pressure on land elsewhere. In the context of a global economy, West Africa remains a large consumer and producer of a selection of commodities. However, the growth in population in combination with rising incomes may lead to increases in the region’s imports. For West Africa, climate change is likely to have negative effects on both crop yields and grassland productivity, and lack of investment in agriculture may exacerbate them. The aim of the regional scenarios is provide challenging contexts for policy makers to test and develop a range of national and regional policies. To date, the scenarios have been used in a number of policy design processes which include collaborations with ECOWAS priority setting, the National Plan for the Rural Sector for Burkina Faso (PNSR), and district and national level policy processes in Ghana

    A multimodal deep learning framework using local feature representations for face recognition

    Get PDF
    YesThe most recent face recognition systems are mainly dependent on feature representations obtained using either local handcrafted-descriptors, such as local binary patterns (LBP), or use a deep learning approach, such as deep belief network (DBN). However, the former usually suffers from the wide variations in face images, while the latter usually discards the local facial features, which are proven to be important for face recognition. In this paper, a novel framework based on merging the advantages of the local handcrafted feature descriptors with the DBN is proposed to address the face recognition problem in unconstrained conditions. Firstly, a novel multimodal local feature extraction approach based on merging the advantages of the Curvelet transform with Fractal dimension is proposed and termed the Curvelet–Fractal approach. The main motivation of this approach is that theCurvelet transform, a newanisotropic and multidirectional transform, can efficiently represent themain structure of the face (e.g., edges and curves), while the Fractal dimension is one of the most powerful texture descriptors for face images. Secondly, a novel framework is proposed, termed the multimodal deep face recognition (MDFR)framework, to add feature representations by training aDBNon top of the local feature representations instead of the pixel intensity representations. We demonstrate that representations acquired by the proposed MDFR framework are complementary to those acquired by the Curvelet–Fractal approach. Finally, the performance of the proposed approaches has been evaluated by conducting a number of extensive experiments on four large-scale face datasets: the SDUMLA-HMT, FERET, CAS-PEAL-R1, and LFW databases. The results obtained from the proposed approaches outperform other state-of-the-art of approaches (e.g., LBP, DBN, WPCA) by achieving new state-of-the-art results on all the employed datasets

    Effects Of Length, Complexity, And Grammatical Correctness On Stuttering In Spanish-Speaking Preschool Children

    Get PDF
    Purpose: To explore the effects of utterance length, syntactic complexity, and grammatical correctness on stuttering in the spontaneous speech of young, monolingual Spanish-speaking children. Method: Spontaneous speech samples of 11 monolingual Spanish-speaking children who stuttered, ages 35 to 70 months, were examined. Mean number of syllables, total number of clauses, utterance complexity (i.e., containing no clauses, simple clauses, or subordinate and/or conjoined clauses), and grammatical correctness (i.e., the presence or absence of morphological and syntactical errors) in stuttered and fluent utterances were compared. Results: Findings revealed that stuttered utterances in Spanish tended to be longer and more often grammatically incorrect, and contain more clauses, including more subordinate and/or conjoined clauses. However, when controlling for the interrelatedness of syllable number and clause number and complexity, only utterance length and grammatical incorrectness were significant predictors of stuttering in the spontaneous speech of these Spanish-speaking children. Use of complex utterances did not appear to contribute to the prediction of stuttering when controlling for utterance length. Conclusions: Results from the present study were consistent with many earlier reports of English-speaking children. Both length and grammatical factors appear to affect stuttering in Spanish-speaking children. Grammatical errors, however, served as the greatest predictor of stuttering.Communication Sciences and Disorder

    Neutron cross-sections for advanced nuclear systems : The n-TOF project at CERN

    Get PDF
    © Owned by the authors, published by EDP Sciences, 2014 This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly citedThe study of neutron-induced reactions is of high relevance in a wide variety of fields, ranging from stellar nucleosynthesis and fundamental nuclear physics to applications of nuclear technology. In nuclear energy, high accuracy neutron data are needed for the development of Generation IV fast reactors and accelerator driven systems, these last aimed specifically at nuclear waste incineration, as well as for research on innovative fuel cycles. In this context, a high luminosity Neutron Time Of Flight facility, n-TOF, is operating at CERN since more than a decade, with the aim of providing new, high accuracy and high resolution neutron cross-sections. Thanks to the features of the neutron beam, a rich experimental program relevant to nuclear technology has been carried out so far. The program will be further expanded in the near future, thanks in particular to a new high-flux experimental area, now under construction.Peer reviewedFinal Published versio

    Echinacoside ameliorates hepatic fibrosis and tumor invasion in rats with thioacetamide-induced hepatocellular carcinoma

    Get PDF
    Hepatocellular carcinoma (HCC) affects approximately 800,000 individuals globally each year. Despite advancements in HCC treatments, there is still a pressing need to identify new drugs that can combat resistance. One potential option is echinacoside, a natural caffeic acid glycoside with antioxidant, anti-inflammatory, antidepressant, and antidiabetic properties. Therefore, we aimed to investigate the ability of echinacoside to exhibit antitumor activity against HCC in rats through ameliorating hepatic fibrosis and tumor invasion. Rats were given thioacetamide to induce HCC, and some were given 30 mg/kg of echinacoside twice a week for 16 weeks. The liver impairment was assessed by measuring serum α-fetoprotein (AFP) and examining liver sections stained with Masson trichrome or anti-transforming growth factor (TGF)-β1 antibodies. The hepatic expression of mRNA and protein levels of TGF-β1, β-catenin, SMAD4, matrix metalloproteinase-9 (MMP9), phosphoinositide 3-kinases (PI3K), mammalian target of rapamycin (mTOR), connective tissue growth factor 2 (CCN2), E-Cadherin, platelets derived growth factor (PDGF)-B and fascin were also analyzed. Echinacoside improved the survival rate of rats by decreasing serum AFP and the number of hepatic nodules. Examination of micro-images indicated that echinacoside can reduce fibrosis. It also significantly decreased the expression of TGF-β1, β-catenin, SMAD4, MMP9, PI3K, mTOR, CCN2, PDGF-B, and fascin while enhancing the expression of E-Cadherin. In conclusion, echinacoside exhibits a protective effect against HCC by increasing survival rates and decreasing tumor growth. It also acts as an inhibitor of the hepatic tissue fibrosis pathway by reducing the expression of TGF-β1, β-catenin, SMAD4, PI3K, CCN2, PDGF-B and mTOR. Additionally, it prevents tumor invasion by suppressing MMP9 and fascin, and increasing the expression of E-Cadherin

    Eccentric Exercise Facilitates Mesenchymal Stem Cell Appearance in Skeletal Muscle

    Get PDF
    Eccentric, or lengthening, contractions result in injury and subsequently stimulate the activation and proliferation of satellite stem cells which are important for skeletal muscle regeneration. The discovery of alternative myogenic progenitors in skeletal muscle raises the question as to whether stem cells other than satellite cells accumulate in muscle in response to exercise and contribute to post-exercise repair and/or growth. In this study, stem cell antigen-1 (Sca-1) positive, non-hematopoetic (CD45-) cells were evaluated in wild type (WT) and α7 integrin transgenic (α7Tg) mouse muscle, which is resistant to injury yet liable to strain, 24 hr following a single bout of eccentric exercise. Sca-1+CD45− stem cells were increased 2-fold in WT muscle post-exercise. The α7 integrin regulated the presence of Sca-1+ cells, with expansion occurring in α7Tg muscle and minimal cells present in muscle lacking the α7 integrin. Sca-1+CD45− cells isolated from α7Tg muscle following exercise were characterized as mesenchymal-like stem cells (mMSCs), predominantly pericytes. In vitro multiaxial strain upregulated mMSC stem cells markers in the presence of laminin, but not gelatin, identifying a potential mechanistic basis for the accumulation of these cells in muscle following exercise. Transplantation of DiI-labeled mMSCs into WT muscle increased Pax7+ cells and facilitated formation of eMHC+DiI− fibers. This study provides the first demonstration that mMSCs rapidly appear in skeletal muscle in an α7 integrin dependent manner post-exercise, revealing an early event that may be necessary for effective repair and/or growth following exercise. The results from this study also support a role for the α7 integrin and/or mMSCs in molecular- and cellular-based therapeutic strategies that can effectively combat disuse muscle atrophy
    corecore