90 research outputs found

    Mössbauer characterization of microbially mediated iron and manganese ores of variable geological ages

    Get PDF
    A combination of various techniques was applied to investigate the mineralogy of the Neoproterozoic Urucum iron and manganese deposit (Brazil) and Carboniferous and Permian manganese carbonate deposits (China). The examined deposits exhibited signs of microbial mediation from Fe and Mn bacteria and cyanobacteria. The studied samples showed diversity in their composition and particle size. Probes from Urucum deposit revealed that the rocks consist mainly of hematite, showing Mn substitution which reflects the oxidation of Mn on the active surface of Fe-rich biomat. Nanominerals occurring in significant concentration also supported the microbial contribution to the formation of these ores. Representative samples of Neoproterozoic and Permian deposits showed considerable amount of mixed carbonates with variable composition. 57Fe Mössbauer spectroscopy analysis supported by X-ray diffraction and transmission electron microscopy data provided a detailed characterization of Fe-rich mineral phases of the samples, including metal ratio outlooks, particle size dimension and presence and type of impurities. Integrity and high resolution of the methods allowed to determine new features of the samples reflecting important signatures of microbial activity revealing the biogeochemistry of the biomat formation

    Bjurböle L/LL4 ordinary chondrite properties studied by Raman spectroscopy, X-ray diffraction, magnetization measurements and Mössbauer spectroscopy

    Get PDF
    Bjurbole L/LL4 ordinary chondrite was studied using scanning electron microscopy with energy dispersive spectroscopy, Raman spectroscopy, X-ray diffraction, magnetization measurements and Mossbauer spectroscopy. The phase composition and the relative iron fractions in the iron-bearing phases were determined. The unit cell parameters for olivine, orthopyroxene and clinopyroxene are similar to those observed in the other ordinary chondrites. The higher contents of forsterite and enstatite were detected by Raman spectroscopy. Magnetization measurements showed that the temperature of the ferrimagnetic-paramagnetic phase transition in chromite is around 57 K and the saturation magnetic moment is similar to 7 emu/g. The values of the Fe-57 hyperfine parameters for all components in the Bjurbole Mossbauer spectrum were determined and related to the corresponding iron-bearing phases. The relative iron fractions in Bjurbole and the Fe-57 hyperfine parameters of olivine, orthopyroxene and troilite were compared with the data obtained for the selected L and LL ordinary chondrites. The Fe2+ occupancies of the M1 and M2 sites in silicate crystals were determined using both X-ray diffraction and Mossbauer spectroscopy. Then, the temperatures of equilibrium cation distribution were determined, using two independent techniques, for olivine as 666 K and 850 K, respectively, and for orthopyroxene as 958 K and 1136 K, respectively. Implications of X-ray diffraction, magnetization measurements and Mossbauer spectroscopy data for the classification of the studied Bjurbole material indicate its composition being close to the LL group of ordinary chondrites. (C) 2020 Elsevier B.V. All rights reserved.Peer reviewe

    Mössbauer study of some novel iron-bis-glyoxime and iron-tris-glyoxime complexes

    Get PDF
    Dioximes as ligands are used as analytical reagents and serve as models for biological systems as well as catalysts in chemical processes. A number of novel mixed complexes of the type [Fe(DioxH)2(amine)2] have been prepared and characterised by FTIR, 57Fe Mössbauer and mass spectroscopy by us. We have found strong Fe–N donor acceptor interactions and iron occurred in low-spin FeII state in all complexes. Later, we have also found that the incorporation of branching alkyl chains (isopropyl) in the complexes alters the Fe–N bond length and results in high-spin iron(II) state [1, 2]. The question arises: can the spin state of iron be manipulated generally by replacing the short alkyl chains with high volume demand ones in Fe-azomethine-amine complexes? To answer the question we have synthetized novel iron-bis-glioxime and iron-tris-gloxime complexes when long chain alkyl or aromatic ligands replaced the short alkyl ones and studied by 57Fe Mössbauer spectroscopy, MS, FTIR, UV-VIS, TG-DTA-DTG and XRD methods. Novel iron-bis-glyoxime and iron-tris-glyoxime type complexes, [Fe(Diethyl-Diox)3(BOH)2], [Fe(Diethyl-Diox)3(BOEt)2] and [Fe(phenyl-Me-Diox)3(BOEt)2], were synthesized similarly as described in [2]. The FTIR, UV-VIS, TG-DTA-DTG and MS measurements indicated that the expected novel complexes could be successfully synthesized

    Mössbauer study of FINEMET with different permeability

    Full text link
    Stress field and magnetic field annealed FINEMET ribbons were investigated by 57Fe Mössbauer spectroscopy, magnetic and XRD methods. The change in relative areas of the 2nd and 5th lines in the Mössbauer spectra indicated significant variation in magnetic anisotropy due to the different annealing. High velocity resolution Mössbauer spectroscopy was also used to control the model applied for the evaluation of Mössbauer spectra. A correlation was found between the permeability and the magnetic anisotropy of the annealed FINEMET samples. This can be applied to predict production parameters of FINEMET ribbons with more favorable soft magnetic properties for technological applications. © 2012 Springer Science+Business Media Dordrecht

    Mössbauer and photocatalytic studies of CaFe2O4 nanoparticle-containing aluminosilicate prepared from domestic waste simulated slag

    Get PDF
    The relationship between local structure and visible-light activated photocatalytic effect of simulated domestic waste slag glass–ceramics (R-NaWSFe) was investigated. The largest pseudo-first-order rate constant of 9.75 × 10−3 min−1 was estimated for methylene blue decomposition test under the visible-light irradiation using R-NaWSFe with additional 30 mass% of Fe2O3 heat-treated at 900 °C for 100 min. The reason for the high photoactivity of this sample was mainly due to nanoparticles of CaFe2O4 and α-Fe2O3 confirmed by the Mössbauer spectrum measured at 77 K. It is concluded that the nanoparticles of magnetic components in silica are essential for exhibiting visible-light activated catalytic effect
    corecore