
Generation of superparamagnetism in metallic -iron by swift heavy ion irradiation

Kuzmann, E.; Stichleutner, S.; Homonnay, Z.; Havancsák, K.; Chisholm, C.U.; El-Sharif, M.;
Skuratov, V.A.; Nakanishi, A.; Nomura, K.
Published in:
Radiation Physics and Chemistry

DOI:
10.1016/j.radphyschem.2016.06.032

Publication date:
2016

Document Version
Peer reviewed version

Link to publication in ResearchOnline

Citation for published version (Harvard):
Kuzmann, E, Stichleutner, S, Homonnay, Z, Havancsák, K, Chisholm, CU, El-Sharif, M, Skuratov, VA,
Nakanishi, A & Nomura, K 2016, 'Generation of superparamagnetism in metallic -iron by swift heavy ion
irradiation', Radiation Physics and Chemistry, vol. 127, pp. 165-168.
https://doi.org/10.1016/j.radphyschem.2016.06.032

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please view our takedown policy at https://edshare.gcu.ac.uk/id/eprint/5179 for details
of how to contact us.

Download date: 29. Apr. 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ResearchOnline@GCU

https://core.ac.uk/display/293881658?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1016/j.radphyschem.2016.06.032
https://researchonline.gcu.ac.uk/en/publications/f93bce57-6aee-4943-a2a9-355e31ca5a2b
https://doi.org/10.1016/j.radphyschem.2016.06.032


Generation of superparamagnetism in metallic α-iron by swift heavy ion 

irradiation 

 

E. Kuzmann
1*

, S. Stichleutner
1,2

, Z. Homonnay
1
, K. Havancsák

3
, C. U. Chisholm

4
, M. El-

Sharif
4
, V. A. Skuratov

5
, A. Nakanishi

6
 and K. Nomura

7
 

1
Institute of Chemistry, Eötvös Loránd University, 1117, Budapest, Pázmány Péter sétany 

1/A, Hungary 

2
Centre for Energy Research, Hungarian Academy of Sciences, 1121 Budapest, Konkoly 

Thege Miklós út 29-33, Hungary 

3
Institute of Physics, Eötvös Loránd University, 1117, Budapest, Pázmány Péter sétany 

1/A, Hungary 

4
Surface Technology Research Group, School of Engineering and the Built Environment, 

Glasgow Caledonian University, Cowcaddens Road G0 4 BA, Scotland, UK 

5
Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research, JINR, 

Joliot-Curie 6, 141980, Dubna, Moscow region, Russia 

6
Department of Physics, Shiga University of Medical Science, Seta, 520-21, Otsu, Shiga, 

Japan 

7
Department of Applied Chemistry, Science and Engineering, Meiji University, 1 Chome-

1 Kanda Surugadai, Chiyoda, Tokyo 101-8301, Japan 

*Corresponding author, e-mail:kuzmann@caesar.elte.hu    phone:36204467873 

Keywords: Superparamagnetic iron, Amorphous iron, 
57

Fe conversion electron 

Mössbauer spectroscopy, Swift heavy ion irradiation, Electrodeposition 

 



Abstract 

 

57
Fe conversion electron Mössbauer spectroscopy was used to study the effect of 

swift heavy ion irradiation on electrochemically deposited metallic pure α-iron. We 

succeeded in preparing superparamagnetic iron by irradiating the electrochemically 

prepared thin α-iron films using 247 MeV Kr ions with a fluence of 1×10
13

 ion cm
-2

 

which converted 50% of crystalline α-iron into amorphous and superparamagnetic 

phases, the latter being >20%. The results are discussed in terms of the thermal spike 

model for the formation of the amorphous phase which could be essential for the 

formation of superparamagnetic iron. 

 

1. Introduction 

 

In our previous works we performed Mössbauer spectroscopic and XRD studies 

on the radiation effect of 246 MeV Kr, 470 MeV Xe and 710 MeV Bi ions on 

electrochemically deposited iron thin films [1,2]. It was found that as a result of 

irradiation partial amorphisation of iron took place in the electrochemically deposited 

crystalline ferromagnetic α-iron coatings. The relative amount of the ferromagnetic 

amorphous phase increased with both ion energy and ion mass as well as with the fluence 

of irradiation. Besides ferromagnetic amorphous iron, another iron phase was also 

identified in the room temperature Mössbauer spectra of the swift heavy ion irradiated 

samples and was associated with superparamagnetic iron. 



Superparamagnetism [3-5] is a relaxation phenomenon observed below the Curie 

temperature in single domain ferromagnetic or ferrimagnetic nanoparticles/nanograins [6-

13] (1-10 nm) where magnetisation can randomly flip between the opposite directions of 

the easy axis, provided that the thermal energy is sufficient to overcome the 

corresponding energy barrier. The mean time between flips is known as the Néel 

relaxation time [14-19]. Smaller nanoparticles/nanograins can be expected to exhibit a 

larger frequency of superparamagnetic relaxation. When the time window of the 

experimental method used to determine the magnetisation of superparamagnetic 

nanoparticle/nanograin ensembles is significantly longer than the Néel relaxation time, 

the detected magnetisation tends to average to zero, which is a typical characteristic of 

the superparamagnetic state [20]. Superparamagnetic iron was originally found to form 

under natural circumstances in samples from the moon surface [21-23]. 

Superparamagnetic inclusions of metallic iron, some tens of nm in size, were formed in 

the amorphous rims of lunar regolith grains from solar-wind-reduced indigenous iron 

silicates by either radiation-induced lattice rearrangement, or micrometeorite-induced 

vaporisation and recondensation, or both [24].  

However, a process to obtain superparamagnetism in metallic pure α-iron is still 

unknown. In this work we extended our study on the radiation effect of swift heavy ions 

on electrochemically deposited iron thin films by conversion electron Mössbauer 

measurements carried out at low temperature, in order to confirm the presence of 

superparamagnetic iron in our irradiated samples. 

 

2. Experimental 



 

 The α-iron coatings were prepared using a constant current technique with a 

continuous flow electrodeposition cell plating system. The thin films were deposited on 

electro-polished pure copper substrates using the following electrolyte composition: 

FeSO4 0.2 mol dm
-3

, Na-gluconate 120 g dm
-3

 and peptone 0.1 g dm
-3

. The electrolyte 

was operated at 60 °C with a pH=7.0 and plating times of 20 min. were used. 

The swift heavy ion irradiation of electroplated α-iron was carried out with 246 

MeV energy 
86

Kr
8+

 ions with a fluence of 1×10
13

 ion cm
-2

 at room temperature, at a 

current density of 0.5 μA cm
-2

 and at a pressure of about 10
-3

 Pa, at the U-400 cyclotron 

of the Flerov Laboratory of Nuclear Reactions, JINR, Dubna, Russia. 

Conversion electron Mössbauer  measurements of as-deposited and irradiated α-

iron samples were performed by conventional Mössbauer spectrometers (WISSEL) with 

flowing gas (96% He, 4% CH4 at 293 K and purified helium at 15 K) proportional 

counters and 
57

Co(Rh) sources of 1.85 GBq activity, at room temperature and at 15 K. 

For the 15 K CEMS measurement a cryostat (IwataniCryoMini D310) and counter 

assembly was used [25,26]. The information can be obtained mainly from sample depths 

less than 100 nm [27,28]. Isomer shifts are given relative to α-iron. The evaluation of 

Mössbauer spectra was performed by least-square fitting of the lines using the 

MOSSWINN code [29]. During the fitting procedure the amplitudes of 2
nd

 and 5
th

 lines 

of sextets were set to be independent, while independent linewidths for 1
st
 and 6

th
, 2

nd
 and 

5
th

, 3
rd

 and 4
th

 line pairs were constrained. 

 

3. Results and discussion 
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Fe conversion electron Mössbauer spectra of electrodeposited α-iron samples: 

(a) spectrum for as-deposited sample recorded at 293 K, (b) spectrum for sample 

irradiated with 246 MeV energy Kr ions with a fluence of 1×10
13

 ion cm
-2

 recorded at 

293 K, (c) spectrum for irradiated sample recorded at 15 K are shown in Fig. 1. The 

Mössbauer parameters are shown in Table I. The presented numerical results derived 

from Fig. 1a,b slightly deviate from those published in [1] since we applied a different 

model for the evaluation of the spectra, resulting in a better quality of the fits in the 

present cases. 

 We investigated metallic pure α-iron in the form of thin electrodeposited films. 

The room temperature spectrum of the non-irradiated, as-deposited sample shown in 

Fig. 1(a) consists of a dominating sextet (S1) with narrow spectral lines and a small 

intensity doublet (D1). Sextet S1 is the fingerprint of the crystalline α-iron which has a 

bcc structure [30]. This was also confirmed by XRD measurements which revealed solely 

the presence of the crystalline α-iron phase in the electrodeposited sample. This result is 

consistent with the type of structure to be expected from the electrodeposition of iron. 

Doublet D1 can be attributed to an iron oxy-hydroxide phase based on its characteristic 

Mössbauer parameters [30]. As X-ray diffractograms did not exhibit the existence of this 

phase it can be interpreted to be a thin layer (circa 10 nm) which has formed on the 

surface of the electrodeposited α-iron. This phase can be explained by the corrosion of 

the surface of the electrodeposited α-iron by air after electrodeposition.  

 Fig. 1(b) shows the room temperature spectrum of the irradiated sample, which is 

decomposed into two sextets (S1 and S2), a doublet (D1) and a singlet (P1). The 



corresponding Mössbauer parameters are shown in Table I. This decomposition was 

found to be the optimal for the spectrum fitting at minimal number of components, which 

is consistent with those obtained previously on swift heavy ion irradiated α-iron thin 

films [1,2]. We used a broad singlet instead of a doublet in [1] for component P1 based 

on the works of [31,32]. Sextet S1 again relates to the crystalline α-iron phase. Sextet S2 

has very broad spectral lines which are typical of amorphous phases. This component can 

be considered as a superposition of a number of magnetically split sub-spectra belonging 

to iron atoms being in slightly different microenvironments. The Mössbauer parameters 

of sextet S2 are an excellent match for those of amorphous iron phase [33,34] and thus 

sextet S2 was assigned to amorphous iron phase [1,2]. Doublet D1 again corresponds to 

the iron-oxy-hydroxide phase. Singlet P1 exhibits a very broad line and the value of the 

isomer shift of singlet P1 shown in Table I is characteristic of metallic bcc iron. Taking 

into consideration the phase composition of the electrodeposited sample, this excludes the 

assignment of singlet P1 to any other iron-bearing phase other than one of pure iron. 

However, bcc iron is in a ferromagnetic state, resulting in a typical magnetically split 

pattern such as shown by sextet S1. Surprisingly we observed no magnetic splitting in 

this case. This indicates that the iron atoms represented by singlet P1 are in a state which 

can only be explained by the presence of a superparamagnetic iron phase. The broad 

spectral line of singlet P1 is a typical relaxation spectrum of a superparamagnetic phase. 

The contour of singlet P1 illustrated in Fig. 1(b) corresponds closely with that predicted 

for a superparamagnetic iron phase [31,32]. Irradiation of the electrodeposited α-iron 

samples with 246 MeV energy Kr ions with a fluence of 1×10
13

 ion cm
-2 

has resulted in 

the transformation of about 50% of the crystalline α-iron phase into amorphous and 



superparamagnetic iron phases, the occurrence of the latter being found to be higher than 

20%. The corresponding XRD patterns of the irradiated samples, which are very similar 

to those we reported earlier [1,2], show the presence of crystalline iron only in -Fe (bcc) 

form, which is consistent with occurrence of superparamagnetic iron. 

 As can be seen from Fig. 1(c), the CEM spectrum recorded at 15 K is 

decomposed into two sextets (S1 and S2) and a doublet (D1). The envelope of this 

spectrum is similar to that of the spectrum of the non-irradiated, as-deposited sample 

recorded at room temperature (Fig. 1(a)). No singlet component could be fitted in the 

spectrum and all three spectral components (S1, S2, D1) were assigned correspondingly 

to the room temperature spectrum of the irradiated sample (Fig. 1(b)). The isomer shift of 

the different sub-spectra exhibits regular temperature dependence [35], while quadrupole 

splitting and hyperfine field at different temperatures may also be consistent with their 

regular temperature behavior [36] as they appear to be overlapping within a wide 

confidence interval considering the standard deviation values shown in Table I. However 

we observed significant changes in the spectral areas of the different components in 

comparison with those detected in the room temperature CEM spectrum. Singlet P1, 

which we expected to appear at 0.13 mm s
-1

 isomer shift value according to the second 

order Doppler shift, did not appear in the Mössbauer spectrum and the relative area of 

sextet S1 belonging to crystalline α-iron increased. Taking into account the temperature 

dependence of the Lamb-Mössbauer factors of the phases, the increment of spectral area 

of sextet S1 at 15 K corresponds to the spectral area of singlet P1 at room temperature. 

Consequently, the changes between the 15 K and room temperature CEM spectra of the 

irradiated sample reflect the transformation of the room temperature superparamagnetic 



iron phase into ferromagnetic α-iron phase at 15 K. This confirms the correct assignment 

of superparamagnetic iron phase at room temperature. Note that the above mentioned 

transformation is inconsistent with the assignment of singlet P1 to a paramagnetic 

amorphous state. Furthermore, its isomer shift value is lower than expected for 

amorphous iron [33,34]. The changes between the Mössbauer spectra recorded at 293 K 

and 15 K correspond well to a superparamagnetic relaxation, thus confirming the 

presence of superparamagnetic iron in our irradiated electrodeposited α-iron samples. 

Our results suggest that the presence of amorphous iron could be essential to the 

creation of the superparamagnetic phase. Amorphous iron occurs when the irradiation 

induces the formation of thermal spikes [37,38], which result in melting and rapid 

quenching of matter along the path of the ion. The matter temperature along the ion path 

may significantly exceed the melting point and a liquid cylinder of a few nanometres in 

diameter described as a thermal spike is formed, which cools down within 10
-11

 s leading 

to a cooling rate of 10
14

 K s
-1

. The development of an amorphous matrix structure is then 

the result of the superposition of individual amorphous regions [37-39]. From our 

observations we presume that the superparamagnetic metallic iron grains are formed at 

the boundary of the thermal spike regions and we are of the opinion that the amorphous 

iron matrix surrounding the superparamagnetic iron grains probably has a significant 

influence on the grain size and the stability of the superparamagnetic phase. The grain 

size of the superparamagnetic iron is limited to the small distance between the 

neighbouring amorphous regions and these, regions probably overlap with increasing 

irradiation fluence finally leading to a reduction of the superparamagnetic iron phase in 

direct accordance with our experimental observations [1,2]. Assuming that the 



superparamagnetic component is associated with bcc iron whose first order cubic 

anisotropy energy density is K1 = 4.5×10
4
 J m

-3
 [40] division of room temperature kB T 

with K1 gives an approximate upper limit of circa 5-6 nm for the size of the 

superparamagnetic iron grains. 

The existing magnetic state below the superparamagnetic transition may also be 

influenced by the effect of a collective state (like superferromagnetism [41-44]) due to 

the ferromagnetic metallic iron matrix where non-negligible inter-particle interactions 

might be present. However, this doesn’t affect our finding that superparamagnetic iron 

phase exists at room temperature. 

 

4. Conclusion 

 

 We have successfully shown that superparamagnetism can be developed in α-iron 

in the presence of an amorphous matrix generated by irradiation. Our results suggest that 

the presence of an amorphous phase could be essential for the formation of 

superparamagnetic iron. We can conclude from our results that the formation of the 

superparamagnetic iron phase takes place in a similar manner to that found in earlier 

mentioned lunar samples [21-24]. In both cases the phenomenon occurs due to irradiation 

with the simultaneous formation of an amorphous phase but in the case of the lunar 

samples superparamagnetism is the result of chemical reduction due to the solar wind 

irradiation.  
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FIG. 1. 
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Fe conversion electron Mössbauer spectra of electrodeposited α-iron samples: 

(a) spectrum for as-deposited sample recorded at 293 K, (b) spectrum for sample 

irradiated with 246 MeV energy Kr ions with a fluence of 1×10
13

 ion cm
-2

 recorded at 

293 K, (c) spectrum for irradiated sample recorded at 15 K. 



 

 Mössbauer 

parameters 

Non-irradiated Kr, 1×10
13 

ion cm
-2

, 

measured at 293 K 

Kr, 1×10
13 

ion cm
-2

, 

measured at 15 K 

δ  

(doublet D1), 

mm s
-1

 

 

0.31 ± 0.019 

 

0.38 ± 0.025 

 

0.53 ± 0.021 

Δ  

(doublet D1), 

mm s
-1

 

 

0.73 ± 0.039 

 

0.93 ± 0.043 

 

0.75 ± 0.041 

δ  

(sextet S1), 

mm s
-1

 

 

0 ± 0.010 

 

0 ± 0.010 

 

0.12 ± 0.011 

B  

(sextet S1), 

T 

 

33.0 ± 0.25 

 

32.7 ± 0.32 

 

33.7 ± 0.35 

δ  

(sextet S2), 

mm s
-1

 

 

— 

 

0.1 ± 0.015 

 

0.21 ± 0.016 

B  

(sextet S2), 

T 

 

— 

 

 

26.7 ± 0.61 

 

26.0 ± 0.62 

δ  

(singlet P1), 

mm s
-1

 

 

— 

 

0.04 ± 0.011 

 

— 

A  

(doublet D1), 

% 

 

7.7 ± 2.8 

 

3.8 ± 2.5 

 

5.1 ± 2.6 

A  

(sextet S1), 

% 

 

92.3 ± 2.0 

 

51.0 ± 2.2 

 

75.6 ± 2.1 

A  

(sextet S2), 

% 

 

— 

 

24.6 ± 3.1 

 

19.4 ± 2.8 

A  

(singlet P1), 

% 

 

— 

 

20.6 ± 2.2 

 

— 

 

TABLE I. Mössbauer parameters relating to the 
57

Fe conversion electron Mössbauer 

spectra for electrodeposited α-iron samples. δ, Δ, B and A denote isomer shift, quadrupole 

splitting, effective magnetic induction and spectral area, respectively. Linewidths, W, of 

the different sub-spectra were obtained to vary between the following values for 

WS1=0.29-0.36 ± 0.05 mm s
-1

, WD1=0.39-0.69 ± 0.11 mm s
-1

, WS2=0.9-1.8 ± 0.21 mm s
-1

 

(for the different lines of sextet S2) and WP1=1.31 ± 0.08 mm s
-1

, respectively. 


