307 research outputs found
The Distribution of Redshifts in New Samples of Quasi-stellar Objects
Two new samples of QSOs have been constructed from recent surveys to test the
hypothesis that the redshift distribution of bright QSOs is periodic in
. The first of these comprises 57 different redshifts among all
known close pairs or multiple QSOs, with image separations 10\arcsec,
and the second consists of 39 QSOs selected through their X-ray emission and
their proximity to bright comparatively nearby active galaxies. The redshift
distributions of the samples are found to exhibit distinct peaks with a
periodic separation of in identical to that claimed
in earlier samples but now extended out to higher redshift peaks and 4.47, predicted by the formula but never seen before. The periodicity
is also seen in a third sample, the 78 QSOs of the 3C and 3CR catalogues. It is
present in these three datasets at an overall significance level -
, and appears not to be explicable by spectroscopic or similar
selection effects. Possible interpretations are briefly discussed.Comment: submitted for publication in the Astronomical Journal, 15 figure
Blue Straggler Stars: Early Observations that Failed to Solve the Problem
In this chapter, I describe early ideas on blue stragglers, and various
observations (some published, some not) that promised but failed to resolve the
question of their origin. I review the data and ideas that were circulating
from Allan Sandage's original discovery in 1953 of "anomalous blue stars" in
the globular cluster M3, up until about 1992, when what seems to have been the
only previous meeting devoted to Blue Straggler Stars (BSSs) was held at the
Space Telescope Science Institute.Comment: Chapter 2, in Ecology of Blue Straggler Stars, H.M.J. Boffin, G.
Carraro & G. Beccari (Eds), Astrophysics and Space Science Library, Springe
Discrete quark-lepton symmetry need not pose a cosmological domain wall problem
Quarks and leptons may be related to each other through a spontaneously
broken discrete symmetry. Models with acceptable and interesting collider
phenomenology have been constructed which incorporate this idea. However, the
standard Hot Big Bang model of cosmology is generally considered to eschew
spontaneously broken discrete symmetries because they often lead to the
formation of unacceptably massive domain walls. We point out that there are a
number of plausible quark-lepton symmetric models which do not produce
cosmologically troublesome domain walls. We also raise what we think are some
interesting questions concerning anomalous discrete symmetries.Comment: 35pp, LATEX, PURD-TH-92-1
Horizontal Branch Stars: The Interplay between Observations and Theory, and Insights into the Formation of the Galaxy
We review HB stars in a broad astrophysical context, including both variable
and non-variable stars. A reassessment of the Oosterhoff dichotomy is
presented, which provides unprecedented detail regarding its origin and
systematics. We show that the Oosterhoff dichotomy and the distribution of
globular clusters (GCs) in the HB morphology-metallicity plane both exclude,
with high statistical significance, the possibility that the Galactic halo may
have formed from the accretion of dwarf galaxies resembling present-day Milky
Way satellites such as Fornax, Sagittarius, and the LMC. A rediscussion of the
second-parameter problem is presented. A technique is proposed to estimate the
HB types of extragalactic GCs on the basis of integrated far-UV photometry. The
relationship between the absolute V magnitude of the HB at the RR Lyrae level
and metallicity, as obtained on the basis of trigonometric parallax
measurements for the star RR Lyrae, is also revisited, giving a distance
modulus to the LMC of (m-M)_0 = 18.44+/-0.11. RR Lyrae period change rates are
studied. Finally, the conductive opacities used in evolutionary calculations of
low-mass stars are investigated. [ABRIDGED]Comment: 56 pages, 22 figures. Invited review, to appear in Astrophysics and
Space Scienc
Quantum Correlations in NMR systems
In conventional NMR experiments, the Zeeman energy gaps of the nuclear spin
ensembles are much lower than their thermal energies, and accordingly exhibit
tiny polarizations. Generally such low-purity quantum states are devoid of
quantum entanglement. However, there exist certain nonclassical correlations
which can be observed even in such systems. In this chapter, we discuss three
such quantum correlations, namely, quantum contextuality, Leggett-Garg temporal
correlations, and quantum discord. In each case, we provide a brief theoretical
background and then describe some results from NMR experiments.Comment: 21 pages, 7 figure
Advances in research on the use of biochar in soil for remediation: a review
Purpose: Soil contamination mainly from human activities remains a major environmental problem in the contemporary world. Significant work has been undertaken to position biochar as a readily-available material useful for the management of contaminants in various environmental media notably soil. Here, we review the increasing research on the use of biochar in soil for the remediation of some organic and inorganic contaminants. Materials and methods: Bibliometric analysis was carried out within the past 10 years to determine the increasing trend in research related to biochar in soil for contaminant remediation. Five exemplar contaminants were reviewed in both laboratory and field-based studies. These included two inorganic (i.e., As and Pb) and three organic classes (i.e., sulfamethoxazole, atrazine, and PAHs). The contaminants were selected based on bibliometric data and as representatives of their various contaminant classes. For example, As and Pb are potentially toxic elements (anionic and cationic, respectively), while sulfamethoxazole, atrazine, and PAHs represent antibiotics, herbicides, and hydrocarbons, respectively. Results and discussion: The interaction between biochar and contaminants in soil is largely driven by biochar precursor material and pyrolysis temperature as well as some characteristics of the contaminants such as octanol-water partition coefficient (KOW) and polarity. The structural and chemical characteristics of biochar in turn determine the major sorption mechanisms and define biochar’s suitability for contaminant sorption. Based on the reviewed literature, a soil treatment plan is suggested to guide the application of biochar in various soil types (paddy soils, brownfield, and mine soils) at different pH levels (4–5.5) and contaminant concentrations ( 50 mg kg−1). Conclusions: Research on biochar has grown over the years with significant focus on its properties, and how these affect biochar’s ability to immobilize organic and inorganic contaminants in soil. Few of these studies have been field-based. More studies with greater focus on field-based soil remediation are therefore required to fully understand the behavior of biochar under natural circumstances. Other recommendations are made aimed at stimulating future research in areas where significant knowledge gaps exist
Digital strategies to a local cultural tourism development: Project e-Carnide
Digital humanities and smart economy strategies are being seen as an important link between tourism and cultural heritage, as they may contribute to differentiate the audiences and to provide different approaches. Carnide is a peripheral neighbourhood of Lisbon with an elderly population, visible traces of rurality, and strong cultural and religious traditions. The academic project e-Carnide concerns its tangible and intangible cultural heritage and the data dissemination through a website and a mobile app, with textual and visual information. The project aims to analyse the impact of technological solutions on cultural tourism development in a sub-region, involving interdisciplinary research in heritage, history of art, ethnography, design communication and software engineering and the collaboration between the university and local residents in a dynamic and innovative way. Framed by a theoretical approach about the role of smart economy for the cultural tourism development in peripheral areas, this paper focuses on a case study, dealing with documents, interviews and observations, in order to understand how the e-Carnide project evolves. The study comprises an analysis about the strengths, weaknesses, opportunities and threats (SWOT analysis) of the project in view to realize its social and cultural implications and to appreciate how it can be applied in other similar and enlarged projects. Results of the research indicates that the new technological strategies can promote the involvement of the population in the knowledge of its own heritage as a factor of cultural and creative tourism development centred on an authentic and immersive experience of the places
Tmetoceratidae (Ammonitina) fauna from the Gerecse Mts (Hungary)
Abstract
Taxonomic and stratigraphic problems of the family Tmetoceratidae and the genera Dumortieria, Catulloceras, Cotteswoldia, Pleydellia and Tmetoceras included in it are briefly discussed. Fifteen species of Tmetoceratidae are described and illustrated from the Upper Toarcian-Aalenian ammonite assemblages of the Gerecse Mts (NE Transdanubian Range, Hungary). The fauna described here is closely allied to the Mediterranean Province of the Mediterranean-Caucasian Realm
Highly Diastereo- and Enantioselective CuH-Catalyzed Synthesis of 2,3-Disubstituted Indolines
A diastereo- and enantioselective CuH-catalyzed method for the preparation of highly functionalized indolines is reported. The mild reaction conditions and high degree of functional group compatibility as demonstrated with substrates bearing heterocycles, olefins, and substituted aromatic groups, renders this technique highly valuable for the synthesis of a variety of cis-2,3-disubstituted indolines in high yield and enantioeselectivity.National Institutes of Health (U.S.) (Award GM46059)Danish Council for Independent Research (Postdoctoral Fellowship
Meta-omics approaches to understand and improve wastewater treatment systems
Biological treatment of wastewaters depends on microbial processes, usually carried out by mixed microbial communities. Environmental and operational factors can affect microorganisms and/or impact microbial community function, and this has repercussion in bioreactor performance. Novel high-throughput molecular methods (metagenomics, metatranscriptomics, metaproteomics, metabolomics) are providing detailed knowledge on the microorganisms governing wastewater treatment systems and on their metabolic capabilities. The genomes of uncultured microbes with key roles in wastewater treatment plants (WWTP), such as the polyphosphate-accumulating microorganism Candidatus Accumulibacter phosphatis, the nitrite oxidizer Candidatus Nitrospira defluvii or the anammox bacterium Candidatus Kuenenia stuttgartiensis are now available through metagenomic studies. Metagenomics allows to genetically characterize full-scale WWTP and provides information on the lifestyles and physiology of key microorganisms for wastewater treatment. Integrating metagenomic data of microorganisms with metatranscriptomic, metaproteomic and metabolomic information provides a better understanding of the microbial responses to perturbations or environmental variations. Data integration may allow the creation of predictive behavior models of wastewater ecosystems, which could help in an improved exploitation of microbial processes. This review discusses the impact of meta-omic approaches on the understanding of wastewater treatment processes, and the implications of these methods for the optimization and design of wastewater treatment bioreactors.Research was supported by the
Spanish Ministry of Education and Science (Contract Project
CTQ2007-64324 and CONSOLIDER-CSD 2007-00055) and
the Regional Government of Castilla y Leon (Ref. VA038A07).
Research of AJMS is supported by the European Research
Council (Grant 323009
- …
