132 research outputs found

    Structural Information in Two-Dimensional Patterns: Entropy Convergence and Excess Entropy

    Full text link
    We develop information-theoretic measures of spatial structure and pattern in more than one dimension. As is well known, the entropy density of a two-dimensional configuration can be efficiently and accurately estimated via a converging sequence of conditional entropies. We show that the manner in which these conditional entropies converge to their asymptotic value serves as a measure of global correlation and structure for spatial systems in any dimension. We compare and contrast entropy-convergence with mutual-information and structure-factor techniques for quantifying and detecting spatial structure.Comment: 11 pages, 5 figures, http://www.santafe.edu/projects/CompMech/papers/2dnnn.htm

    Random Walks with Long-Range Self-Repulsion on Proper Time

    Full text link
    We introduce a model of self-repelling random walks where the short-range interaction between two elements of the chain decreases as a power of the difference in proper time. Analytic results on the exponent ν\nu are obtained. They are in good agreement with Monte Carlo simulations in two dimensions. A numerical study of the scaling functions and of the efficiency of the algorithm is also presented.Comment: 25 pages latex, 4 postscript figures, uses epsf.sty (all included) IFUP-Th 13/92 and SNS 14/9

    Probability Distribution of the Shortest Path on the Percolation Cluster, its Backbone and Skeleton

    Full text link
    We consider the mean distribution functions Phi(r|l), Phi(B)(r|l), and Phi(S)(r|l), giving the probability that two sites on the incipient percolation cluster, on its backbone and on its skeleton, respectively, connected by a shortest path of length l are separated by an Euclidean distance r. Following a scaling argument due to de Gennes for self-avoiding walks, we derive analytical expressions for the exponents g1=df+dmin-d and g1B=g1S-3dmin-d, which determine the scaling behavior of the distribution functions in the limit x=r/l^(nu) much less than 1, i.e., Phi(r|l) proportional to l^(-(nu)d)x^(g1), Phi(B)(r|l) proportional to l^(-(nu)d)x^(g1B), and Phi(S)(r|l) proportional to l^(-(nu)d)x^(g1S), with nu=1/dmin, where df and dmin are the fractal dimensions of the percolation cluster and the shortest path, respectively. The theoretical predictions for g1, g1B, and g1S are in very good agreement with our numerical results.Comment: 10 pages, 3 figure

    Epidemic processes with immunization

    Full text link
    We study a model of directed percolation (DP) with immunization, i.e. with different probabilities for the first infection and subsequent infections. The immunization effect leads to an additional non-Markovian term in the corresponding field theoretical action. We consider immunization as a small perturbation around the DP fixed point in d<6, where the non-Markovian term is relevant. The immunization causes the system to be driven away from the neighbourhood of the DP critical point. In order to investigate the dynamical critical behaviour of the model, we consider the limits of low and high first infection rate, while the second infection rate remains constant at the DP critical value. Scaling arguments are applied to obtain an expression for the survival probability in both limits. The corresponding exponents are written in terms of the critical exponents for ordinary DP and DP with a wall. We find that the survival probability does not obey a power law behaviour, decaying instead as a stretched exponential in the low first infection probability limit and to a constant in the high first infection probability limit. The theoretical predictions are confirmed by optimized numerical simulations in 1+1 dimensions.Comment: 12 pages, 11 figures. v.2: minor correction

    Monte Carlo computation of correlation times of independent relaxation modes at criticality

    Get PDF
    We investigate aspects of universality of Glauber critical dynamics in two dimensions. We compute the critical exponent zz and numerically corroborate its universality for three different models in the static Ising universality class and for five independent relaxation modes. We also present evidence for universality of amplitude ratios, which shows that, as far as dynamic behavior is concerned, each model in a given universality class is characterized by a single non-universal metric factor which determines the overall time scale. This paper also discusses in detail the variational and projection methods that are used to compute relaxation times with high accuracy

    Crossover phenomena in spin models with medium-range interactions and self-avoiding walks with medium-range jumps

    Full text link
    We study crossover phenomena in a model of self-avoiding walks with medium-range jumps, that corresponds to the limit N0N\to 0 of an NN-vector spin system with medium-range interactions. In particular, we consider the critical crossover limit that interpolates between the Gaussian and the Wilson-Fisher fixed point. The corresponding crossover functions are computed using field-theoretical methods and an appropriate mean-field expansion. The critical crossover limit is accurately studied by numerical Monte Carlo simulations, which are much more efficient for walk models than for spin systems. Monte Carlo data are compared with the field-theoretical predictions concerning the critical crossover functions, finding a good agreement. We also verify the predictions for the scaling behavior of the leading nonuniversal corrections. We determine phenomenological parametrizations that are exact in the critical crossover limit, have the correct scaling behavior for the leading correction, and describe the nonuniversal lscrossover behavior of our data for any finite range.Comment: 43 pages, revte

    Nonequilibrium relaxation of the two-dimensional Ising model: Series-expansion and Monte Carlo studies

    Full text link
    We study the critical relaxation of the two-dimensional Ising model from a fully ordered configuration by series expansion in time t and by Monte Carlo simulation. Both the magnetization (m) and energy series are obtained up to 12-th order. An accurate estimate from series analysis for the dynamical critical exponent z is difficult but compatible with 2.2. We also use Monte Carlo simulation to determine an effective exponent, z_eff(t) = - {1/8} d ln t /d ln m, directly from a ratio of three-spin correlation to m. Extrapolation to t = infinity leads to an estimate z = 2.169 +/- 0.003.Comment: 9 pages including 2 figure

    Inventorying geological heritage in large territories : a methodological proposal applied to Brazil

    Get PDF
    An adequate management of geological heritage by national and regional authorities presupposes the existence of a solid geosites inventory. Unfortunately, this is not the case for many countries. Most often, there is no national inventory at all or the method and criteria used to assess geosites was not adequate. This paper makes an overview of the strengths and weaknesses of the most common procedures to produce a geosite inventory and proposes a methodology particularly adapted for large territories such as Brazil. Nevertheless, this methodological approach can be easily adapted to any other geographical or geological setting, promoting the characterization and conservation of the world's geological heritage.High Level Scholarship Programme of the European Union - Programme AlβanFundação para a Ciência e a Tecnologia (FCT)

    Inventory and quantitative assessment of geosites and geodiversity sites: a review

    Get PDF
    "Published online: 15 January 2015"The inventory and quantitative assessment of the most valuable occurrences of geodiversity are essential steps in any geoconservation strategy and in the establishment of priorities in site management. Despite the existence of many site inventories applied to different scales (countries, municipalities, parks, etc.), the criteria used for their selection are often unclear and poorly defined. This paper proposes a new approach to the concepts of geosite and geodiversity site and reviews the procedures used in the development of a systematic site inventory applied to different scales and values. Procedures to achieve a numerical evaluation of the value and degradation risk of sites are reviewed and new criteria are proposed. Finally, guidelines are presented, bearing in mind the preparation of effective geodiversity inventories, to support geoparks’ strategies. This paper aims to contribute to a better understanding and use of the above-mentioned concepts, which are essential for the implementation of geoconservation actions worldwide.The author thanks Diamantino Pereira, Flavia Lima, and Paulo Pereira for fruitful discussions and insights; Teresa Mota for the English revision; and the reviewers for significant improvements of the first submitted version. This paper results of the research done at the University of Minho and at the Geology Centre of the University of Porto, partially founded by the Foundation for Science and Technology (Portugal), strategic project with reference PEst-OE/CTE/UI0039/2014
    corecore