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Monte Carlo computation of correlation times of independent relaxation modes at criticality
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Faculty of Applied Sciences, Delft University, P.O. Box 5046, 2600 GA Delft, The Netherlands

Lorentz Institute, Leiden University, Niels Bohrweg 2, P.O. Box 9506, 2300 RA Leiden, The Netherlands
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We investigate aspects of the universality of Glauber critical dynamics in two dimensions. We compute the
critical exponentz and numerically corroborate its universality for three different models in the static Ising
universality class and for five independent relaxation modes. We also present evidence for universality of
amplitude ratios, which shows that, as far as dynamic behavior is concerned, each model in a given universality
class is characterized by a single nonuniversal metric factor which determines the overall time scale. This paper
also discusses in detail the variational and projection methods that are used to compute relaxation times with
high accuracy.

I. INTRODUCTION

Critical-point behavior is a manifestation of power-law
divergences of the correlation length and the correlation
time. The power laws that describe the divergence of the
correlation length on approach of the critical point are ex-
pressed by means of critical exponents that are dependent on
the direction of this approach, which may, e.g., be ordering-
field like or temperature like. The exponents describing the
singularities inthermodynamicquantities can be expressed in
terms of the same exponents. In addition to the exponents
defining these power laws, another critical exponent, viz., the
dynamic exponentz, is required for the singularities in the
dynamics. This exponentz is defined by the relationship that
holds between the correlation lengthj and the correlation
time t, namely,t}jz.

One of the directions along which one can approach the
critical singularity is the finite-size direction; i.e., one in-
creases the system sizeL while keeping the independent
thermodynamic variables at their infinite-system critical val-
ues. In this case,j}L so thatt}Lz. This relation has been
used extensively to obtain the dynamic exponentz from
finite-size calculations.

In this paper we deal with universality of dynamic
critical-point behavior. One would not expect systems in dif-
ferent static universality classes to have the same dynamic
exponents, and even within the same static universality class,
different dynamics may have different exponents. For in-
stance, in the case of the Ising model, Kawasaki dynamics
which satisfies a local conservation law1 has a larger value of
z than Glauber dynamics,2 in which such a conservation law
is absent. Also the introduction of nonlocal spin updates, as
realized, e.g., in cluster algorithms, is known to lead to a
different dynamic universal behavior.3–5

Conservation laws and nonlocal updates tend to have a
large effect on the numerical value of the dynamic expo-
nents, but until fairly recently, numerical resolution of the
expected differences of dynamic exponents of systems in dif-
ferent static universality classes for dynamics with local up-

dates has been elusive. This is caused by the difficulty of
obtaining the required accuracy in estimates of the dynamic
critical exponent. Under these circumstances it is evident that
only a limited progress has been made with respect to the
interesting questions regarding dynamic universality classes.

In this paper we present a detailed exposition of a method
of computing dynamic exponents with high accuracy.6,7 We
consider single spin-flip Glauber dynamics. This is defined
by a Markov matrix, and computation of the correlation time
is viewed here as an eigenvalue problem, since correlation
times can be obtained from the subdominant eigenvalues of
the Markov matrix.

If a thermodynamic system is perturbed out of equilib-
rium, different thermodynamic quantities relax back at a dif-
ferent rates. More generally, there are infinitely many inde-
pendent relaxation modes for a system in the thermodynamic
limit. Let us label the models within a given universality
class by means ofk, and denote bytLik the autocorrelation
time of relaxation modei of a system of linear dimensionL.
In this paper we present strong numerical evidence that, as
indeed renormalization group theory suggests, at criticality
the relaxation times have the following factorization prop-
erty:

tLik'mkAiL
z, ~1!

wheremk is a nonuniversalmetric factor, which differs for
different representatives of the same universality class as in-
dicated;Ai is a universalamplitude, which depends on the
modei; andz is theuniversaldynamical exponent introduced
above.

While the relaxation time of the slowest relaxation mode
is obtained from the second-largest eigenvalue of the Mar-
kov matrix, lower-lying eigenvalues yield the relaxation
times of faster modes. To compute these we construct, em-
ploying a Monte Carlo method, variational approximants for
several eigenvectors. These approximants are called opti-
mized trial vectors. The corresponding eigenvalues can then
be estimated by evaluating with Monte Carlo techniques the
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overlap of these trial vectors and the corresponding matrix
elements of the Markov matrix in the truncated basis
spanned by these optimized trial vectors. It should be noted
that both the optimization scheme and the evaluation of these
matrix elements critically depend on the fact that the Markov
matrix is sparse. That is, the number of configurations acces-
sible from any given configuration is equal to the number of
sites only, rather than the number of possible spin configu-
rations.

Given such fixed trial vectors, this approach has the ad-
vantage of simplicity and high statistical accuracy, but the
disadvantage is that results are subject to systematic, varia-
tional errors, which only vanish in the ideal limit where the
variational vectors become exact eigenvectors or span an in-
variant subspace of the Markov matrix. Since the condition
is rarely satisfied in cases of practical interest, a projection
Monte Carlo method is then used, to reduce the systematic
error, but this is at the expense of an increase of the statisti-
cal errors. The method we use in this paper is a combination
and generalization of the work of Umrigaret al.8 and that of
Ceperley and Bernu.9

To summarize, the Monte Carlo method discussed here
consists of two phases. In the first phase, trial vectors are
optimized. The ultimate, yet unattainable goal of this phase
is to construct exact eigenvectors. In this phase of the com-
putation, very small Monte Carlo samples are used, consist-
ing typically of no more than a few thousand spin configu-
rations. In the second phase, one performs a standard Monte
Carlo computation in which one reduces statistical errors by
increasing the length of the computation rather than the qual-
ity of the variational approximation.

The computed correlation times, derived from the partial
solution of the eigenvalue problem as sketched above, are
used in a finite-size analysis to compute the dynamic critical
exponentz. We verify its universality for several models in
the static universality class of the two-dimensional Ising
model. We also address another manifestation of dynamic
universality. As was mentioned, in addition to the usual
static critical exponents, there is only one new exponent that
governs the leading singularities of critical dynamics, viz.,z.
Similarly, one would expect that, within the context of
Glauber dynamics, the description of time-dependent
critical-point amplitudes requires only a single nonuniversal
metric factor to determine the time scale of each different
model within a given universality class. Our results corrobo-
rate this idea, which is the immediate generalization to criti-
cal dynamics of work on static critical phenomena by Priv-
man and Fisher.10

In this paper we apply the techniques outlined above to
three different two-dimensional Ising models subject to
Glauber-like spin dynamics. These models are defined on a
simple quadratic lattice of sizeL3L with periodic boundary
conditions. The HamiltonianH, defined on a general spin
configurationS5(s1 ,s2 , . . . ), isgiven by

H~S!

kT
52K(̂

i j &
sisj2K8(

[kl]
sksl , ~2!

where the first summation is on all nearest-neighbor pairs of
sites of the squareL3L lattice, the second summation is on
all next-nearest-neighbor pairs, and the Ising variables

si , . . . ,sl assume values61. Periodic boundaries are used
throughout. In particular, we focus on models described by
three ratios b5K8/K, namely, b521/4, 0 ~nearest-
neighbor model! and 1 ~equivalent-neighbor model!. The
nonplanar models forbÞ0 are not exactly solvable and their
critical points are known only approximately. Yet it was
demonstrated to a high degree of numerical accuracy that
that they belong to the static Ising universality class.11,12 For
the nearest-neighbor model the critical coupling isK
5 1

2 ln(11A2); for the other two models estimates of the
critical points areK50.190 192 6807(2) for b51 and K
50.697 220 7(2) forb521/4.12,13

We use the dynamics of the heat-bath algorithm with ran-
dom site selection. The single-spin-flip dynamics is deter-
mined by the Markov matrixP defined as follows. The ele-
ment P(S8,S) is the transition probability of going from
configurationS to S8. If S and S8 differ by more than one
spin, P(S8,S)50. If both configurations differ by precisely
one spin,

P~S8,S!5
1

2L2 H 12tanhFH~S8!2H~S!

2kT G J , ~3!

whereL2 is the total number of spins. The diagonal elements
P(S,S) follow from the conservation of probability,

(
S8

P~S8,S!51, ~4!

whereS8 runs over all possible 2L
2

spin configurations.
We denote the probability of finding spin configurationS

at time t by r t(S). By design, the stationary state of the
Markov process is the equilibrium distribution

r`~S!5
exp@2H~S!/kT#

Z
[

cB~S!2

Z
, ~5!

where the normalization factorZ is the partition function.
The dynamical process defined by Eq.~3! is constructed

so as to satisfy detailed balance, which is equivalent to the
statement that the matrixP̂ with elements

P̂~S8,S![
1

cB~S8!
P~S8,S!cB~S! ~6!

is symmetric. Therefore the eigenvalues ofP are real.
The Markov matrix determines the time evolution of

r t(S), i.e.,

r t11~S!5(
S8

P~S,S8!r t~S8!. ~7!

The simultaneous probability distributionr t8,t81t(S,S8) that
the system is in stateS at time t8 and in stateS8 at time t8
1t is

r t8,t81t~S,S8!5Pt~S8,S!r t8~S!, ~8!

wherePt(S8,S) denotes the (S8,S) element of thetth power
of the matrixP. For sufficiently large timest8, one may take
r t8(S)5r`(S) so that the autocorrelation functionCA(t) of
an observableA, the average with respect to timet8 of
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A(t8)A(t1t8), can equivalently be written as the ensemble
averagê A(t8)A(t81t)& for large t8. Thus

CA~ t !5 lim
t8→`

(
S

(
S8

A~S!A~S8!r t8,t81t~S,S8!, ~9!

whereA(S) denotes the value ofA in a spin configurationS.
After substitution of Eq.~9! and expansion ofA(S)r t8(S) in
right-hand eigenvectors of the Markov matrix, it follows at
once that the time-dependent correlation functions of a sys-
tem of sizeL have the following form:

CA~ t !5(
i

ci sgnlLi
t expF2

t

L2tLi
G , ~10!

where the dependence on the specific modelk has been sup-
pressed in denoting bytLi the relaxation times of the inde-
pendent modes of the equilibration process. ThetLi are de-
termined by the eigenvalues of the Markov matrix. We
denote these eigenvalueslLi ( i 50,1,2, . . . ,2L2

21), and or-
der them so that 15lL0.ulL1u>ulL2u>••• . Note that
conservation of probability implies thatlL051; by construc-
tion, the corresponding right-hand eigenvector is the Boltz-
mann distribution.

The relaxation times are given by

tLi52
1

L2 lnulLi u
~ i 51,2, . . .!. ~11!

The factorL2 is inserted because, as usual, time is measured
units of one flip per spin, which corresponds toL2 iterations
of the process described by Eq.~7!.

Note that the stochastic matrixP has the same symmetry
properties as the Hamiltonian and the Boltzmann distribu-
tion. In addition to spin inversion, these symmetries include
translations, reflections, and rotations of theL3L lattice. It
follows that each eigenvector ofP, as well as its associated
relaxation mode, has distinct symmetry properties that can be
characterized by a set of ‘‘quantum numbers.’’ For instance,
the eigenvector associated with the second-largest eigen-
value is antisymmetric under spin inversion and invariant
under translations, reflections, and rotations. It describes the
relaxation of the total magnetization; this process, with re-
laxation timetL1, is thus the slowest relaxation mode con-
tained in the stochastic matrix.

In this work, we restrict ourselves to relaxation modes
that are invariant under geometric symmetries of the spin
lattice. However, in addition to eigenvectors that are sym-
metric under spin inversion, we include antisymmetric ones,
so as to obtain the longest relaxation time. As a consequence
of this restriction to geometric invariance, spatially nonho-
mogeneous relaxation processes fall outside the scope of this
work.

By design, the stationary state of the Markov process is
the equilibrium state

r`~S!5
exp@2H~S!/kT#

Z
[

cB~S!2

Z
, ~12!

where the normalization factorZ is the partition function.

The dynamical process defined by Eq.~3! is constructed
so as to satisfy detailed balance, which is equivalent to the
statement that the matrixP̂ with elements

P̂~S8,S![
1

cB~S8!
P~S8,S!cB~S! ~13!

is symmetric.
The layout of the rest of this paper is as follows. In Sec. II

we discuss the general principles of the method used in this
paper. The expressions in this section feature exhaustive
summation over all spin configurations, which renders them
useless for practical computations. The Monte Carlo summa-
tion methods employed instead are discussed in Sec. III.
Trial vectors, a vital ingredient of the method, are discussed
in Sec. IV, and numerical results are discussed in Sec. V.
Finally, Sec. VI contains a discussion of issues that remain to
be addressed by future work.

II. EXACT SUMMATION

A. Variational approximation

Single eigenvector

In this section we discuss trial vector optimization, which
is used to reduce the statistical errors in the Monte Carlo
computation of eigenvalues of the Markov matrix. First, we
review the case of a single eigenvalue,8,14,15 and then we
generalize to optimization of multiple trial vectors. In this
section, we discuss the exact expressions involving summa-
tion over all possible spin configurations. In cases of practi-
cal interest, these expressions cannot be evaluated as written;
for their approximate evaluation one uses the Monte Carlo
methods discussed in Sec. III.

A powerful method of optimizing a single, many-
parameter trial vector, say,ucT&, is minimization of the vari-
ance of theconfigurational eigenvalue,which in the context
of quantum Monte Carlo is called thelocal energy. That is,
definecT(S)5^SucT& for an arbitrary configurationS. We
wish to satisfy the eigenvalue equation

cT8~S!5lcT~S!, ~14!

where the prime indicates matrix multiplication byP̂, i.e.,
f 8(S)[(S8P̂(S,S8) f (S8) for any functionf defined on the
spin configurations. Even ifcT is not an eigenvector, one can
define theconfigurational eigenvalueby

lc~S!5H cT8~S!

cT~S!
, if cT~S!Þ0,

0, otherwise.

~15!

If cT is not an eigenvector, Eq.~14! gives an overdetermined
set of equations forl for a givencT and a sufficiently big set
of configurationsS. One can obtain a least-squares estimate
of the eigenvaluel by minimizing the squared residual of
Eq. ~14!. This yields the usual variational estimate

PRB 62 1091MONTE CARLO COMPUTATION OF CORRELATION . . .



l~p!5
^cTuP̂ucT&

^cTucT&
5

(
S

cT8~S!cT~S!

(
S

cT~S!2

5

(
S

lc~S!cT~S!2

(
S

cT~S!2

,

~16!

which is the average of the configurational eigenvaluelc .
The standard Rayleigh-Ritz variational method, which

can be used for the largest eigenvalue, consists in maximiza-
tion of l̄(p) with respect to the parametersp. However, one
can formulate a different optimization criterion as follows.
The gradient ofl̄(p) with respect tocT(S) is

]l̄~p!

]cT~S!
52

cT8~S!2l̄~p!cT~S!

(
S8

cT~S8!2

. ~17!

Clearly, this gradient vanishes forany eigenvector and this
suggests as an alternative optimization criterion minimiza-
tion of the magnitude of the gradient of a normalized trial
vector cT . With respect to Eq.~14!, this corresponds to
minimization of the normalized squared residual

x2~p!5

(
S

@cT8~S!2l̄~p!cT~S!#2

(
S

cT~S!2

5

(
S

@lc~S!2l̄~p!#2cT~S!2

(
S

cT~S!2

5
^cTu~ P̂2l̄ !2ucT&

^cTucT&
,

~18!

which equals the variance of the configurational eigenvalue,
as shown.

B. Multiple eigenvectors

Minimization of x2(p) is a valid criterion for any eigen-
vector, but if this is used without the equivalent of an or-
thogonalization procedure, one would in practice simply
keep reproducing an approximation to the same eigenvector,
the dominant one most of the time. Since orthogonalization
is not easily implemented with Monte Carlo methods, we
utilize straightforward generalizations of Eqs.~14! and ~16!
to deal with more than one eigenvalue and eigenvector.
Equation~18! is a little problematic in this respect, as will
become clear.

Suppose we start from a set ofn trial vectors cTi ( i
50,1, . . . ,n21). We can then write Eq.~14! in matrix form

cTi8 ~S!5 (
j 50

n21

L̂ i j cTj~S!. ~19!

As before, the prime on the left-hand side indicates matrix
multiplication by P̂, and again Eq.~19! for all i andS form
an overdetermined set of equations for the matrixL̂ i j . These
equations have no solution, unless then basis vectorscTi

span an invariant subspace of the matrixP̂, which in non-
trivial applications of course is never the case. Again, how-
ever, one can solve for the matrix elementsL̂ i j in a least-
squares sense. This yields

L̂5P̂N̂21, ~20!

where

N̂i j 5(
S

cTi~S!cTj~S!5^cTi ucTj& ~21!

and

P̂i j 5(
S

cTi8 ~S!cTj~S!5^cTi uP̂ucTj&. ~22!

Note that although these matrix elements depend on the nor-
malization of theucTi&, the matrixL̂ is invariant under an
overall change of normalization.

By diagonalization of then3n matrix L̂ one obtains an
approximate, partial eigensystem of the Markov matrix.
More specifically, suppose that

L̂5D21diag~ l̃0 , . . . ,l̃n21!D. ~23!

The eigenvaluesl̃0.l̃1>•••>l̃n21 of L̂ are variational
lower bounds for the exact eigenvalues of the Markov matrix
P, in the sense thatl̃ i<l i ,16 if the exact eigenvalues are
numbered such thatl̃0.l̃1>•••, in contrast with the con-
vention used in the discussion following Eq.~10!. This prop-
erty is a consequence of the interlacing property of the ei-
genvalues of symmetric matrices and their submatrices, also
known as the separation theorem.17 Note that in denoting the
eigenvalues we omit the indexL indicating system size,
where this is not confusing. The approximate eigenvectorsc̃ i
are given by

c̃ i5 (
j 50

n21

Di j cTj , ~24!

which can be verified as follows: multiply Eq.~19! through
by Dki , and sum oni to verify that c̃k8 proportional toc̃k .
The expressions derived above are usually9 derived by start-
ing from the linear combinations given in this last equation.
The Di j then are treated as variational parameters, and are
determined by requiring stationarity of the Rayleigh quo-
tient. This yields the following equation for theDi j :

(
j

Di j P̂ jk5l̃ i(
j

Di j N̂jk , ~25!

a generalized eigenvalue problem equivalent to the eigen-
value problem defined byL̂ defined in Eq.~20!.

Next we discuss the generalization to more than one trial
vector of minimization of the variance as given by Eq.~18!.
In this context it is important to keep in mind that the varia-
tional approximation is invariant under replacement of the
basis vectors by a nonsingular linear superposition. This
yields a similarity transformation ofL̂, and leaves invariant
the approximate eigenvalues and eigenvectors. Of course,
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one would like to have an optimization criterion that shares
this invariance. The squared residual of Eq.~19! fails in this
respect. This sum is not even invariant under a simple res-
caling of the basis functionscTi , and there is no obvious
normalization comparable to the one used in Eq.~18!.

One way to perform the optimization in an invariant way
is for each choice of the optimization parameters to compute
linear combinations( jVi j ucTj&, whereV is then3n matrix,
such thatVL̂V21 is diagonal. Each of these linear combina-
tions defines ax2 via Eq. ~18!, and the parameters in the
basis functions can then be optimized by minimization of
thesen sums of squares. One may define a convex sum of
thesex i

2 and optimize all parameters for all basis functions
simultaneously with respect to this combined object func-
tion, or, as we did in our computations, one can perform the
optimization iteratively one vector at a time for eigenvalues
with increasing distance from the top of the spectrum.

Another approach that also yields invariant results is to
perform the optimization by dividing the set of configura-
tions into several subsets, and computing a matrixL̂ for each
subset. One can then minimize the variance of the eigenval-
ues over these subsets. This is the procedure we followed to
produce the results reported in this paper.

We have not investigated which of the two procedures
described above is superior. Both do have a problem in com-
mon, namely, that for a wide class of variational basis vec-
tors, they give rise to a singular or nearly singular optimiza-
tion problem. This is a consequence of the fact that the basis
states are not unique, even if the eigenvalue problem has a
unique solution. For the optimization problem this means
that there are many almost equivalent solutions, a problem
commonly encountered when one performs~nonlinear! least-
squares parameter fits.

More specifically, if the basis vectors are such that a lin-
ear combination of trial vectors can be expressed exactly~or
to good approximation! in the same functional form as the
trial vectors themselves, then there is a gauge symmetry~or
an approximate gauge symmetry! that yields a class of
equivalent~or almost equivalent! solutions of the minimiza-
tion problem. That is, ifucTi& is a solution,( jVi j ucTj& is an
equivalent~or almost equivalent! solution for anyV. This
problem can be solved straightforwardly by fixing the gauge
and performing the optimization subject to the constraint that
( jVi j ucTj&}ucTi&. If the gauge symmetry holds only ap-
proximately, this additional constraint may produce a sub-
optimal solution.

C. Beyond the variational approximation

The eigenvalues obtained by the variational scheme dis-
cussed in the previous sections have a bias caused by admix-
ture of eigenvectors in that part of the spectrum that is being
ignored. This variational bias can be reduced in principle
arbitrarily as follows.9

Let us introduce generalized matrices with elements

N̂i j ~ t !5^cTi uP̂tucTj& ~26!

and

P̂i j ~ t !5^cTi uP̂t11ucTj&. ~27!

For t50 these expressions reduce to Eqs.~21! and ~22!.
One can view the matrix elements fort.0 as having been
obtained by the substitutionucTi&→ P̂t/2ucTi&. Expansion in
the exact eigenvectors immediately shows that the spectral
weights are reduced of ‘‘undesirable’’ eigenvectors with less
dominant eigenvalues, so that the vectorsP̂t/2ucTi& span a
more nearly invariant subspace ofP̂ than the original states.
This process, however, becomes numerically unstable ast
→`, since in that case all basis vectors of the same symme-
try collapse onto the corresponding dominant state.

III. MONTE CARLO SUMMATION

Obviously, the summation over all spin configurations
used in the expressions in the previous section can, in gen-
eral, be done only for small systems. In this section, we
discuss the Monte Carlo estimators of the expressions pre-
sented above. In principle, matrix multiplication involves
summation over all configurations and therefore is not prac-
tically feasible. However, for the dynamics we consider in
this paper the summation required for the matrix multiplica-
tion by P in ^SuP̂ucT& is an exception, since for a givenS
there are onlyL2 configurationsS8 from which S can be
reached with one or fewer spin flips, and these are the only
configurations for whichP(S,S8) does not vanish. For all
other configuration sums a Monte Carlo method is used.

To produce a Monte Carlo estimate ofx2(p) as given in
Eq. ~18!, sample M c spin configurationsSa with a
51, . . . ,M c from the Boltzmann distributioncB(Sa)2. This
yields a Monte Carlo estimate ofl̄(p):

l̄~p!'

(
a

ĉT8~Sa!ĉT~Sa!

(
a

ĉT~Sa!2

, ~28!

where

ĉT~Sa!5
cT~Sa!

cB~Sa!
, ~29!

ĉT8~Sa!5
cT8~Sa!

cB~Sa!
. ~30!

Similarly,

x2~p!'

(
a

@ĉT8~Sa!2l̄ĉT~Sa!#2

(
a

ĉT~Sa!2

. ~31!

Parameter optimization for a single vector is done by gen-
erating a sample of a few thousand configurations and sub-
sequently varying the parametersp while keeping this
sample fixed. The same applies to the optimization of more
than one vector, in which case estimates of the required ma-
trix elementsN̂i j and P̂i j are computed by
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N̂i j '(
a

ĉTi~Sa!ĉTj~Sa![Ñi j ~32!

and

P̂i j '(
a

ĉTi8 ~Sa!ĉTj~Sa![P̃i j . ~33!

We attached tildes to the symbols on the right-hand side
of Eqs.~32! and~33! to indicate that the corresponding quan-
tities are stochastic variables, which is important to keep in
mind for the following discussion.

Since the matrixP̂ is symmetric, one might be inclined to
symmetrize its estimatorP̃i j with respect toi and j. This
symmetrization, however, destroys the zero-variance prin-
ciple satisfied by the expressions as written. As mentioned
before, the eigensystem ofL̂ is obtained exactly and without
statistical noise, if the basis vectorscTi are linear combina-
tions of n exact eigenvectors. In that ideal case,L̂ is
uniquely determined by Eq.~19! even if it is applied only to
an subset of configurationsS. The same holds for a weighted
subset as represented by a Monte Carlo sample. Even though
the matricesP̂ andN̂ themselves depend on the weights and
the subset, factors responsible for statistical noise cancel in
the productP̂N̂21. To demonstrate this, we write the estima-
tor in matrix form

Ñ5C̃C̃† ~34!

and

P̃5C̃8C̃†, ~35!

where C̃ is a rectangular matrix with elementsC̃ ia

5ĉTi(Sa) andC̃ ia8 5ĉTi8 (Sa). Equation~19! in matrix form
becomes

C̃85L̂C̃. ~36!

Clearly, if this last equation holds, P̃Ñ21

5C̃8C̃†(C̃C̃†)215L̂ without statistical noise, as an-
nounced.

We have assumed that one matrix multiplication by the
Markov matrix can be done exactly; repeated multiplications
rapidly become intractable. This is a problem for the compu-
tation of the matrix elements given in Eqs.~26! and~27!. To
obtain a statistical estimate of these matrix elements, one
generates a time series with the Markov matrixP. One then
exploits the fact that in the steady state of the Markov pro-
cess, the relative probability of finding configurations
S1 ,S2 , . . . ,St11 in immediate succession is given by

P~St11uSt!•••P~S2uS1!cB~S1!2. ~37!

For a Monte Carlo run of lengthM c , this property allows
us to write

N̂i j
(t)5 (

S0 , . . . ,St

cTi~St!P̂~StuSt21!••• P̂~S1uS0!cTj~S0!

5 (
S0 , . . . ,St

ĉTi~St!ĉTj~S0!P~StuSt21!•••P~S1uS0!

3cB~S0!2 ~38!

'M c
21 (

s51

Mc

ĉTi~Ss1t!ĉTj~Ss! ~39!

Similarly,

P̂i j
(t)5 (

S0 , . . . ,St11

cTi~St11!P̂~St11uSt!••• P̂~S1uS0!cTj~S0!

5 (
S0 , . . . ,St

ĉTi8 ~St!ĉTj~S0!P̂~StuSt21!••• P̂~S1uS0!

3cB~S0!2 ~40!

'~2M c!
21 (

s51

Mc

@ĉTi8 ~Ss1t!ĉTj~Ss!1ĉTi8 ~Ss!

3ĉTj~Ss1t!#. ~41!

The first term in expression~41! follows immediately from
expression~40!; to obtain the second term one has to use the
time reversal symmetry of a stochastic process that satisfies
detailed balance, viz.,

P~St11uSt!•••P~S2uS1!cB~S1!2

5P~S1uS2!•••P~StuSt11!cB~St11!2. ~42!

Again, these estimators satisfy the zero-variance principle
mentioned above, as long as the expressions are used as writ-
ten, i.e., without symmetrization with respect toi and j.

FIG. 1. Prefactorc1 /cB of the first subdominant eigenvector of
the Markov matrix vs total magnetizationM for a 333 nearest-
neighbor Ising (b50) lattice. For each value ofM c1(S)/cB(S) is
plotted for all configurationsS with M (S)5M . All 512 points are
plotted, but because of symmetries, many coincide.
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IV. TRIAL VECTORS

As we mentioned, the form of the trial vectors used in
these calculations is a major factor determining the statistical
accuracy of the results. It not too difficult to make an initial
guess for the form of the eigenvector corresponding to the
second largest eigenvalue of the Markov matrix. Numeri-
cally exact calculations for small systems show that this ei-
genvector is antisymmetric under spin inversion, which is a
manifestation of the longevity of fluctuations of the magne-
tization and not a peculiarity of small systems.

This suggests the following initial approximation of the
eigenvector belonging to the second largest eigenvector, the
first subdominant eigenvector of the symmetrized Markov
matrix P̂:

cT1~S!5mcB~S!, ~43!

wherem is the average magnetization. Figures 1–3 are plots
of c1(S)/cB(S) versus the total magnetizationM5L2m for
the exact eigenvectorc1 computed for 333, 434, and 5
35 nearest-neighbor Ising systems. For all three, the prefac-
tor m in Eq. ~43! clearly captures a significant part of the

truth, but there are two shortcomings. First of all, there is
scatter, which indicates thatc1(S)/cB(S) is a function of
more than just the magnetization. Second, the ‘‘curve’’ is
nonlinear. The latter problem can be cured quite easily by
replacingm in Eq. ~43! by an odd polynomialm(11a2m2

1•••) with coefficientsak to be determined variationally.
Similarly, computations for small systems~see Sec. V A

for further details! suggest that the second largest eigenvalue
is associated with an eigenvector that is even under spin
inversion, as illustrated in Fig. 4. A trial vector of this form
is readily constructed by replacingm on the right-hand side
of Eq. ~43! by a polynomial even inm. It turns out that the
general picture as just described is largely independent ofL.

More in general, the plots shown in Figs. 1–7 strongly
suggest that the subdominant eigenvectors of the Markov
matrix P, subject to the imposed spin, rotation, and transla-
tion symmetries, are reasonably approximated by the Boltz-
mann distribution multiplied by a mode-dependent function
of the magnetization. As can be seen in Figs. 1–7, the num-
ber of nodes of this prefactor increases by 1 as one steps
down the spectrum, but it is also clear that, especially for the
less dominant eigenvectors, the residual variance is signifi-
cant.

To begin to address the problem of the scatter and to
improve the trial vector systematically, it is necessary to

FIG. 2. Prefactorc1 /cB of the first subdominant eigenvector of
the Markov matrix vs total magnetizationM for a 434 nearest-
neighbor Ising (b50) lattice.

FIG. 3. Prefactorc1 /cB of the first subdominant eigenvector of
the Markov matrix vs total magnetizationM for a 535 nearest-
neighbor Ising (b50) lattice. Although up to 400 configuration
collapse onto a single point, crowding prevents individual resolu-
tion of most data points.

FIG. 4. Prefactorc2 /cB of the second subdominant eigenvector
of the Markov matrix vs total magnetizationM for a 535 nearest-
neighbor Ising (b50) lattice.

FIG. 5. Prefactorc3 /cB of the third subdominant eigenvector
of the Markov matrix vs total magnetizationM for a 535 nearest-
neighbor Ising (b50) lattice.
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identify other important variables besides the magnetization
and to incorporate them in the trial vector. We tried multi-
spin correlations involving nearby spins but after consider-
able failed experimentation we established that long-
wavelength fluctuations of the magnetization are the suitable
variables. This is reasonable when one compares, e.g., the
eigenvalue equations forc0(S8) and c1(S8) and realizes
that the eigenvalues differ only very little from unity except
for very small systems. We therefore used the Fourier com-
ponents of the spin configuration, which are defined by

mk5L22 (
l 151

L

(
l 251

L

expF2p i

L
~k1l 11k2l 2!Gsl 1l 2

, ~44!

wherek5(k1 ,k2) with 0<k1 ,k2,L, and sl 1l 2
denotes the

spin at lattice site (l 1 ,l 2). Note thatm[m0,0. If we restrict
ourselves to eigenvectors that are translationally invariant,
the arguments presented in the previous paragraph yield the
following trial odd or even vectors:

cT~S!5cB~S!Fa6~m!1 ( 8
k1 ,k2

ak1k2

6 ~m!mk1
mk2

dk11k2,0

1 ( 8
k1 ,k2 ,k3

ak1k2k3

7 ~m!mk1
mk2

mk3
dk11k21k3,0

1 . . . G . ~45!

The primes attached to the summation signs indicate that
terms with k i5(0,0) are excluded. The coefficients
a6, ak1k2

6 , . . . arepolynomials inm, which are either odd

or even under spin inversion and are to be chosen according
to the desired symmetry. Rotation and reflection symmetries
of the lattice are imposed by equating coefficients of the
appropriate monomials inm.

The results reported in Ref. 6 were obtained using a more
complicated version of Eq.~45!, namely,

cT~S!5cB~S!Fa2~m!1 ( 8
k1 ,k2

ak1k2

2 ~m!mk1
mk2

dk11k2,0

1 ( 8
k1 ,k2 ,k3

ak1k2k3

1 ~m!mk1
mk2

mk3
dk11k21k3,01 . . . G

3Fa1~m!1 ( 8
k1 ,k2

ak1k2

1 ~m!mk1
mk2

dk11k2,0

1 ( 8
k1 ,k2 ,k3

ak1k2k3

2 ~m!mk1
mk2

mk3
dk11k21k3,0

1•••G . ~46!

In those calculations also the coupling constant appearing in
the Boltzmann factor was treated as a variational parameter,
but it turned out that the optimal value of this parameter was
indistinguishable from the critical coupling. It does not seem
that the more complicated form of expression~46! resulted in
a major improvement, but we did not perform a systematic
comparison of these trial vectors.

The coefficients in the trial vector are treated as varia-
tional parameters. As in all nonlinear fitting problems it is
important to use parameters parsimoniously, and to do so
one has to establish a hierarchy among these parameters. The
scheme we used was to iterate the following step:~a! sys-
tematically add terms of increasing degree inm; ~b! when
this saturates, increase the degree of terms with products of
mk with mkÞ(0,0).

The effectivity of this variational approach using low-
momentum Fourier components, as described here, becomes
apparent when one compares the variational eigenvalues
with the exact numerical ones. For instance, the difference in
the case of the second eigenvalue of theL55 nearest-
neighbor model was only 231027.

V. NUMERICAL RESULTS

A. Exact eigenvectors for small systems

The full, symmetric Markov matrixP̂ for an L3L Ising
model is a 2L

2
32L2

matrix, so that exact numerical calcula-

FIG. 6. Prefactorc4 /cB of the fourth subdominant eigenvector
of the Markov matrix vs total magnetizationM for a 535 nearest-
neighbor Ising (b50) lattice.

FIG. 7. Prefactorc5 /cB of the fifth subdominant eigenvector of
the Markov matrix vs total magnetizationM for a 535 nearest-
neighbor Ising (b50) lattice.
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tions are possible only for very small systems; see, e.g., re-
sults forL<4 in Ref. 18. In the present work, we performed
such exact computations for systems up toL55. In order to
restrict the numerical task, we chose representations ofP̂ in
subspaces with the appropriate symmetries. Two distinct
symmetries were chosen, both of which impose invariance of
the eigenvectors ofP̂ with respect to geometric translation,
rotation, and mirror inversion. The vectors were chosen to be
either even or odd under spin inversion. This reduced by
almost a factor 400 the dimensionality ofP̂. In this way, the
computation of a restricted set of eigenvectors became fea-
sible for the resulting matrices of order 86 056 for theL
55 cases. For the diagonalization we made use of sparse-
matrix methods and the conjugate-gradient method~see, e.g.,
Refs. 19 and 20! which computes the eigenvector with the
largest eigenvalue. Subsequent orthogonalization with re-
spect to this eigenvector yields the eigenvector with the sec-
ond largest eigenvalue, and further eigenvectors can be ob-
tained similarly. Thus we obtained exact numerical solutions
for six eigenvalueslLi and their corresponding eigenvectors
c i(S) ( i 50, . . . ,5) of theeigenvalue equation

(
S8

P̂~S,S8!c i~S8!5lLic i~S!. ~47!

The largest eigenvaluelL0 is equal to 1, in accordance with
the conservation of probability; its corresponding eigenvec-
tor satisfiesc0(S)5cB(S), as follows from detailed balance.
It is even with respect to spin inversion:c0(S)5c0(2S)
where2S is obtained fromS by inverting all spins. For all
system sizes and models included here, we observed that the
six leading eigenvectors, ordered according to magnitude of
their eigenvalues, alternate between the odd and even sub-
spaces: the first eigenvector is even, the second one is odd,
the third one is even subspace, and so on, with the caveat
that forL52, e.g., the odd subspace contains only two inde-
pendent states. As we discussed above, the resulting eigen-
vectors provide useful information on how to construct trial
vectors; moreover, knowledge of accurate eigenvalues for
L<5 provided an powerful test of the Monte Carlo method,
the results of which are presented in the following subsec-
tion.

B. Monte Carlo calculations

All simulations took place at the respective critical points
of the models considered. This point is known exactly in the
case of the nearest-neighbor model@Kc5 ln(11A2)/2#, and
was determined numerically12 for the other two models:Kc
50.190 192 6807(2) for theequivalent-neighbor model and
Kc50.697 2207(2) for the model with antiferromagnetic
next-nearest-neighbor interactions. The finite-size scaling
analysis presented in Ref. 12 showed that, to the extent they
are compatible with the numerical results, deviations from
Ising universal behavior are extremely small. The raw simu-
lation data used in this current paper include the data on
which were based the numerical results for the largest relax-
ation time of the nearest-neighbor model, reported in Ref. 6.
The latter results were obtained from 83108 Monte Carlo
samples for systems with finite sizes up toL515. The trial
vector used for these computations consisted was of the form

given in expression~46! and used up to 36 variational pa-
rameters. Also included in the present analysis are the simu-
lations reported in Ref. 7, which contained 1.23108 Monte
Carlo samples for all three models with system sizes up to
L520.

In addition, new simulations for each of the three models
were performed, with a length of 23108 Monte Carlo
samples for system sizes up toL520 and of 1.63108 Monte
Carlo samples for system sizeL521. These new simulations
used up to 89 variational parameters in the trial functions for
each eigenvector of each model.

In order to suppress biases due to deviations of random-
ness, we made use of a random number generator which
combines two different binary shift registers such as de-
scribed and discussed in Ref. 21.

The required Fourier components of the spatial magneti-
zation distribution were sampled at intervals of one sweep
for the smallest systems up to about 15 sweeps for the largest
ones. The Monte Carlo calculation of the autocorrelation
times ~actually the eigenvalues of the Markov matrix! was
performed for each run as a whole as well as separately for a
number of up to 1024 blocks into which the run was split.
This blocking procedure enabled us to estimate the statistical
errors. Furthermore, the calculation of the eigenvalues ac-

cording to P̂(t)N̂(t)215L̂ (t) still depends on the time dis-

placementst @see Eqs.~39! and~41!#. The calculation ofL̂ (t)

was performed for time displacementstL2250,1,2, . . . up
to 10 or 20 of the above-mentioned intervals. For smallt
these eigenvalue estimates reflect variational bias due to the
residual contributions of relaxation modes decaying faster
than the mode for which the trial vector was constructed. If
the relaxation times of these faster modes are considerably
shorter than that of the mode under investigation, one can
clearly see a fast convergence of the eigenvalue estimate as a
function of t. Convergence, however, occurs to a level that is
only approximately constant because of the correlated statis-
tical noise whose effect still depends ont. With increasingt,
one can also observe that the statistical errors increase. The
latter effect, which is as slow as the pertinent relaxation
mode, occurs when the autocorrelations of the Monte Carlo
sample are decreasing significantly witht. This situation was
indeed observed for the largest eigenvalues; the data con-
verged well witht before the coherence of the sampled data
was lost. It was thus rather simple to select a ‘‘best estimate’’
of those eigenvalues. However, the situation for the smaller
eigenvalues investigated here was much more difficult, be-
cause the relative differences between subsequent autocorre-
lation times are much smaller. The numerical results for the
eigenvalues are listed in Ref. 22

C. Determination of the dynamic exponent

In two-dimensional Ising models, finite-size corrections
are known that decay with finite size asL22, and integral
powers thereof may also be expected. In the absence of in-
formation on possible additional finite-size corrections of a
different type that could occur in dynamic phenomena, we
try to describe the finite-size data for the various autocorre-
lation times, as given in Eq.~11!, by the formula
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tL'Lz(
k50

nc

akL
22k. ~48!

Herez is the dynamic exponent,ak the finite-size amplitude,
andnc is the number of correction-to-scaling terms included.
Not explicitly shown in this notation is that the autocorrela-
tion times depend on the relaxation mode and the model.

On the basis of Eq.~48!, a considerable number of least-
squares fits were applied to the numerical results for the au-
tocorrelation times. For each model and relaxation mode,
one may vary bothnc , the number of correction terms, and
the low-L cutoff specifying the minimal system size included
in the fit. The smaller the number of corrections, the larger
the low-L cutoff must be chosen in order to obtain an accept-
able squared residualx2. A selection of fits that display the
numerical trends is presented in Ref. 22

The ‘‘best fits’’ were chosen on the basis of thex2 crite-
rion, the dependence on the low-L cutoff, and the mutual
consistency of fits with differentnc . The fits are summarized
in Table I. Since the errors are not only of a statistical nature,
but also depend on residual bias in the autocorrelation times
and subjective choices made in the selection of the best fits,
we quote error bars equal to two standard deviations as ob-
tained from statistical considerations only. We believe that
these 2s error estimates are conservative in the case of the
analysis of the second and third largest eigenvalues of the
b>0 models. Theb521/4 model was found to be numeri-
cally less well behaved: the statistical errors, as well as the
corrections to scaling, appear to be larger. Also, the construc-
tion of trial vectors was somewhat less successful than in the
cases of theb>0 models.

The new data are somewhat more accurate than and con-
sistent with our previous work.7 They are also consistent
with the results of Wang and Hu23 for the slowest relaxation
mode of a different set of Ising-like models. They provide a
clear confirmation of universality of the dynamic exponent,
with regard to relaxation modes as well as models. Our best
estimatez52.1667(5) applies to the slowest~odd! relax-
ation mode of the equivalent-neighbor (b51) model.

This result forz is consistent with most of the recently
published values. This agreement includes the results of
Stauffer24 on damage spreading in the Ising model.~The
value listed in Ref. 6 was incorrectly quoted.! It is slightly
larger than the value 2.14 derived by Alexandrowicz25 on the
basis of a scaling argument.

Next we address the question whether the finite-size di-
vergence of the autocorrelation times at criticality can be
described by a dynamic exponentz52 when a logarithmic
factor is included. This possibility was suggested by
Domany,26 and pursued by Swendsen27 and Stauffer28, who
used very large lattices and found that this possibility seems
inconsistent with one way of simulation, but not with a dif-
ferent one. Further references concerning this question are
given in Ref. 29.

Although the present work is restricted to very small sys-
tem sizes, the data are relatively accurate. Thus we tried to fit
the following form to the finite-size data for the slowest re-
laxation mode:

tL'Lz~11b ln L !S (
k50

nc

akL
22kD . ~49!

Fixing z52 and takingb as a variable parameter, we found
that this form could well describe the data for large enough
nc . The quality, as determined by thex2 criterion, of a num-
ber of such fits is shown in Table II. For comparison we
include fits in whichz is a variable parameter without a loga-
rithmic correction.

The results in Table II indicate that the fits with a variable
exponent are usually better than those which include a loga-
rithmic term; i.e., the residualx2 decreases faster when the
low-L cutoff is increased. This is especially apparent for
small nc and for theb50 andb51 models, where the sta-
tistical accuracy is optimal.

Finally we tried a fit according to Eq.~49! with bothz and
b as free parameters. The resolution of both parameters si-
multaneously is quite hard, and lies near the limit of what
can be gleaned from the present data. For the nearest-
neighbor model we find, using system sizesL58 and larger,

TABLE I. Best estimates for the dynamic exponentz for five
relaxation modes in three Ising-like models. These results were se-
lected from a much larger set of least-squares fits, obtained for
different choices of the minimum system size and of the number of
corrections taken into account~see Ref. 22!. The error estimate in
the last decimal place of each entry is listed in parentheses, and is
taken to be two standard deviations in the best fit.

Mode b521/4 b50 b51

1 2.164 ~3! 2.1660 ~10! 2.1667 ~5!

2 2.166 ~3! 2.167 ~1! 2.167 ~1!

3 2.164 ~5! 2.170 ~2! 2.167 ~1!

4 2.17 ~1! 2.162 ~4! 2.170 ~8!

5 2.15 ~2! 2.17 ~1! 2.17 ~1!

TABLE II. Comparison between fits to the autocorrelation
times, with and without a logarithmic finite-size dependence. These
fits apply to the slowest relaxation mode. The first column shows
the minimum system size included, the second the number of cor-
rection terms included. The fourth column displays the squared re-
sidualxz

2 obtained when the dynamic exponentz was left free and
the amplitudeb of the logarithm was fixed at zero. The fifth column
shows the squared residualxb

2 whenz was fixed at value 2, whileb
was left free. The sixth column lists the number of degrees of free-
dom of the fit for comparison.

L> Model nc xz
2 xb

2 df

5 b50 1 239. 274. 76
6 b50 1 98. 187. 72
7 b50 1 83.5 127. 67
8 b50 1 68.7 87.9 62
9 b50 1 63.8 71.9 57

10 b50 1 55.9 57.5 52

8 b51 1 56.0 71.1 51
9 b51 1 50.1 57.4 47

10 b51 1 49.4 49.7 43

4 b50 2 89.2 341. 76
5 b50 2 85.0 136. 75
6 b50 2 83.3 97.2 71
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and nc51, that z52.1360.07 andb50.0560.09, which
again fails to support the presence of a logarithmic term.

D. Universality of finite-size amplitudes

In order to determine the leading amplitudesa0 more
precisely, we repeated the fits as used for the determination
of the dynamic exponent, but with the value of the latter
fixed atz513/6. We note that the combined results forz are
consistent with this fraction. A considerable number of fits
were made, and ‘‘best estimates’’ of the amplitudes are pre-
sented in Table III.

As mentioned in Ref. 7, according to a modest generali-
zation of accepted ideas on universality, the finite-size am-
plitudes of the autocorrelation times should satisfya0
5Aimk , where themk are nonuniversal, model-dependent
constants; the subscriptk refers to the specific model. We
use the notationk521sgn(b) so thatk51 refers to the
model with ferromagnetic nearest-neighbor and antiferro-
magnetic next-nearest-neighbor couplings,k52 denotes the
nearest-neighbor model, andk53 refers to the equivalent-
neighbor model. TheAi , i 51, . . . ,5, aremode-dependent
constants, whose ratios are universal. Since only the product
matters, we are free to choose an arbitrary value for one of
these constants. We chose to fixA151, so that allAi should
become universal constants.

The remaining constantsAi ( i 52, . . . ,5) andmk were
fitted accordingly to the amplitudes listed in Table III. The
result of this least-squares fit ism156.77360.003, m2
54.408160.0009, m352.831260.0005, A250.037 123
60.000 008, A350.017 53060.000 004, A450.010 618
60.000 006, andA550.006 90160.000 005. This fit has
eight degrees of freedom andx259.0, in good agreement
with the assumptions of dynamic universality, and suggest-
ing that our 2s error estimates are not unrealistic. The dif-
ferences between our amplitude estimates and the fitted
productAimk are included in Table III, in units of the last
decimal place listed.

VI. DISCUSSION

The analysis presented above produces an apparently
highly accurate estimate of the dynamic critical exponentz
52.166760.0005 for the case of the equivalent-neighbor
model, where the statistical accuracy and the convergence

are best. However, even in this case it is not possible to rule
out a divergence of the relaxation time of the formL2(1
1b ln L). Nevertheless, our results viewed in their totality
make this behavior rather unlikely. First, the assumption of
this logarithmic form yields fits that converge less rapidly, as
mentioned above. Second, one would have to haveb'1/6
universally, independent of model and relaxation mode,
since our results for the range of system size we studied are
consistent with a divergence of the formtL}Lz}L13/6

'L2(111/6 lnL). Universality of the amplitude of a loga-
rithmic correction would be quite unusual and does not fit
into any theoretical framework of which we are aware.

Some open questions remain regarding the optimized
variational vectors to which this computation owes its accu-
racy. Variational basis vectors of the general form given in
Eq. ~45! are special in the sense that all parameters enter
linearly. The method outlined here does not require this fea-
ture and in fact it was not present in previous computations,
reported in Ref. 6.

For most of the results presented here we used trial vec-
tors with linear parameters optimized by minimization of the
variance of the configurational eigenvalues. As an apparently
equivalent alternative, the full set of symmetrized monomials
in the Fourier coefficients of the spin configuration could be
chosen as basis vectors rather than the linear combinations
defined in Eq.~45!. With this choice, the basis vectors would
not have contained any parameters, but employing this big-
ger truncated basis, the same linear parameters would have
been reintroduced by computing the matrix elementsN̂i j and
P̂i j and solving the generalized eigenvalue problem defined
by Eq. ~25!. In this way, we would have obtained the coef-
ficients for which the Rayleigh quotient is stationary, at least
if the summation over configurations could have been done
exactly. Proceeding in this way, we could have altogether
skipped the optimization scheme based on minimization of
the variance of the configurational eigenvalues@cf. Eq. ~18!
and Sec. II B#.

The obvious question is what is accomplished by the non-
linear minimization of the variance of the configurational
eigenvalues. We do not yet have a convincing answer to this
question. On the one hand, it is not difficult to show that the
zero-variance principle holds for individual eigenstates. That
is, if an eigenvector can represented exactly as a linear com-
bination of the basis vectors, the variational (t50) case will

TABLE III. Best estimates for the finite-size amplitudes of five relaxation modes in three Ising-like
models. These results were selected from a much larger set of least-squares fits obtained for different choices
of the minimum system size and of the number of corrections taken into account~see Ref. 22!. The error
estimate in the last decimal place of each entry is listed in parentheses, and is taken to be two standard
deviations of the best fit. The amplitudes can be written as the product of mode-dependent and model-
dependent constants~see text!; the difference in the last decimal place between the amplitudes and this
product is shown between square brackets.

Mode/model k51 k52 k53

1 ~odd! 6.763 ~6! @-10# 4.4089 ~13! @8# 2.8312 ~5! @0#

2 ~even! 0.2516 ~2! @2# 0.16364 ~5! @0# 0.10510 ~2! @0#

3 ~odd! 0.1188 ~1! @1# 0.07727 ~3! @0# 0.04963 ~1! @0#

4 ~even! 0.07195 ~7! @3# 0.04677 ~4! @-4# 0.03008 ~3! @2#

5 ~odd! 0.0466 ~1! @-1# 0.03041 ~3! @-1# 0.01956 ~2! @2#
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already produce the exact result even if it the eigenvalue
problem contains eigenvectors that cannot be represented ex-
actly in the truncated basis. This is in fact precisely what
happens for the dominant even eigenvector: this vector is
represented exactly even in the truncated basis we use, and
indeed its eigenvalue is reproduced exactly. On the other
hand, our tentative numerical experiments show that the op-
timization method produces more accurate results, which is
not surprising when one considers that the optimized basis
functions give rise to much smaller truncated basis sets. This
in turn yields a generalized eigenvalue problem involving
much smaller matrices that are numerically and statistically
much more robust.

A related problem with a large basis set is that the matrix
N̂ in the generalized eigenvalue problem of Eq.~25! be-
comes numerically singular. In fact, the only way in which
we were able to obtain meaningful results at all is by per-
forming the inversion in the usual regularized fashion as fol-
lows. Use the fact thatN̂ is symmetric and non-negative
definite to write it in the form

N̂5W diag~m1
2 , . . . ,mn

2! W†. ~50!

Then define a regularized inverse ofN̂1/2 as follows:

N̄21/25W diag~m̄1
21 , . . . ,m̄n

21! W†, ~51!

wherem̄ i
215m i

21 if m i exceeds a suitable chosen threshold,

e.g., the square root of the machine accuracy, andm̄ i
2150

otherwise. The nonvanishing eigenvalues ofN̄2 1/2P̂N̄2 1/2

then yield a subset of the eigenvalues ofP̂ that are least
affected by the numerical singularity ofN̂.

Although further modifications of the computational pro-
cedures may lead to additional improvements of our tech-
nique, the numerical results obtained thus far are already
quite promising and the question arises what further applica-
tions are obvious in the field of dynamics of Monte Carlo
methods.

For instance, it seems well possible to apply the present
techniques in three dimensions and to spin-conserving Ka-
wasaki dynamics1 although it is clear that the construction of
trial vectors will have to be modified. In the same context,
we note that direct application of the method used in this
paper to the dynamics of cluster algorithms3–5 is frustrated
by the requirement that one should be able to compute

^SuP̂ucT& numerically exactly. An additional problem for
such dynamics from the perspective of our approach is that
the conceptcorrelation timehas to be handled carefully in
this context.

Let us demonstrate this point by means of the following
thought experiment: the application of the Wolff algorithm
to the ferromagnetic, critical Ising model. As usual, we de-
fine the autocorrelation times in terms of the eigenvalues of

the stochastic matrix. In order to enable a comparison with
other types of dynamics, we choose our unit of time as
L2d22yh Wolff steps (L is the linear system size,d the di-
mensionality, andyh the magnetic renormalization expo-
nent!. Since the average Wolff cluster consists of a number
of sites proportional toL2yh2d, this choice guarantees that,
under equilibrium conditions, an average number of orderLd

spins is processed per unit of time.
Because of the efficiency of the Wolff algorithm, only a

few units of time are needed to generate an independent spin
configuration under practical circumstances. However, if the
fully ordered antiferromagnetic state is chosen as the initial
spin configuration, a number of Wolff steps of orderLd is
required to remove the the antiferromagnetic order; i.e., its
relaxation to equilibrium is anomalously slow. A less ex-
treme but related phenomenon is observed under practical
Wolff simulation conditions at equilibrium: from time to
time large critical fluctuations occur that bring the system
into a state of relatively large disorder and small magnetiza-
tion. These configurations are relatively long lived. In the
time autocorrelation function of the magnetization, this phe-
nomenon translates into a slower-than-exponential decay,30

at least on the numerically accessible time scale. In the lan-
guage of Eq.~10! such a situation follows if one assumes the
existence of anomalously large autocorrelation timestLi as-
sociated with anomalously small amplitudesci . Under these
circumstances we cannot exclude the possibility that the
longest relaxation time following from the Markov matrix
for the Wolff simulation of a finite system corresponds with
an extremely unlikely deviation from equilibrium. Since this
kind of fluctuations may have too low a probability to be of
practical significance, these considerations suggest the possi-
bility that the time needed to generate an ‘‘independent con-
figuration’’ is not simply related to the second largest eigen-
value of the Markov matrix, but rather to some intricate
average, possibly involving the complete spectrum.
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