We consider the mean distribution functions Phi(r|l), Phi(B)(r|l), and
Phi(S)(r|l), giving the probability that two sites on the incipient percolation
cluster, on its backbone and on its skeleton, respectively, connected by a
shortest path of length l are separated by an Euclidean distance r. Following a
scaling argument due to de Gennes for self-avoiding walks, we derive analytical
expressions for the exponents g1=df+dmin-d and g1B=g1S-3dmin-d, which determine
the scaling behavior of the distribution functions in the limit x=r/l^(nu) much
less than 1, i.e., Phi(r|l) proportional to l^(-(nu)d)x^(g1), Phi(B)(r|l)
proportional to l^(-(nu)d)x^(g1B), and Phi(S)(r|l) proportional to
l^(-(nu)d)x^(g1S), with nu=1/dmin, where df and dmin are the fractal dimensions
of the percolation cluster and the shortest path, respectively. The theoretical
predictions for g1, g1B, and g1S are in very good agreement with our numerical
results.Comment: 10 pages, 3 figure