We study a model of directed percolation (DP) with immunization, i.e. with
different probabilities for the first infection and subsequent infections. The
immunization effect leads to an additional non-Markovian term in the
corresponding field theoretical action. We consider immunization as a small
perturbation around the DP fixed point in d<6, where the non-Markovian term is
relevant. The immunization causes the system to be driven away from the
neighbourhood of the DP critical point. In order to investigate the dynamical
critical behaviour of the model, we consider the limits of low and high first
infection rate, while the second infection rate remains constant at the DP
critical value. Scaling arguments are applied to obtain an expression for the
survival probability in both limits. The corresponding exponents are written in
terms of the critical exponents for ordinary DP and DP with a wall. We find
that the survival probability does not obey a power law behaviour, decaying
instead as a stretched exponential in the low first infection probability limit
and to a constant in the high first infection probability limit. The
theoretical predictions are confirmed by optimized numerical simulations in 1+1
dimensions.Comment: 12 pages, 11 figures. v.2: minor correction