403 research outputs found
Weaving Rules into [email protected] for Embedded Smart Systems
Smart systems are characterised by their ability to analyse measured data in
live and to react to changes according to expert rules. Therefore, such systems
exploit appropriate data models together with actions, triggered by
domain-related conditions. The challenge at hand is that smart systems usually
need to process thousands of updates to detect which rules need to be
triggered, often even on restricted hardware like a Raspberry Pi. Despite
various approaches have been investigated to efficiently check conditions on
data models, they either assume to fit into main memory or rely on high latency
persistence storage systems that severely damage the reactivity of smart
systems. To tackle this challenge, we propose a novel composition process,
which weaves executable rules into a data model with lazy loading abilities. We
quantitatively show, on a smart building case study, that our approach can
handle, at low latency, big sets of rules on top of large-scale data models on
restricted hardware.Comment: pre-print version, published in the proceedings of MOMO-17 Worksho
Nickel Isotope Variations in Terrestrial Silicate Rocks and Geological Reference Materials Measured by MC-ICP-MS
International audienceAlthough initial studies have demonstrated the applicability of Ni isotopes for cosmochemistry and as a potential biosignature, the Ni isotope composition of terrestrial igneous and sedimentary rocks, and ore deposits remains poorly known. Our contribution is fourfold: (a) to detail an analytical procedure for Ni isotope determination, (b) to determine the Ni isotope composition of various geological reference materials, (c) to assess the isotope composition of the Bulk Silicate Earth relative to the Ni isotope reference material NIST SRM 986 and (d) to report the range of mass-dependent Ni isotope fractionations in magmatic rocks and ore deposits. After purification through a two-stage chromatography procedure, Ni isotope ratios were measured by MC-ICP-MS and were corrected for instrumental mass bias using a double-spike correction method. Measurement precision (two standard error of the mean) was between 0.02 and 0.04â°, and intermediate measurement precision for NIST SRM 986 was 0.05â° (2s). Igneous- and mantle-derived rocks displayed a restricted range of ÎŽ60/58Ni values between â0.13 and +0.16â°, suggesting an average BSE composition of +0.05â°. Manganese nodules (Nod A1; P1), shale (SDO-1), coal (CLB-1) and a metal-contaminated soil (NIST SRM 2711) showed positive values ranging between +0.14 and +1.06â°, whereas komatiite-hosted Ni-rich sulfides varied from â0.10 to â1.03â°
Surveillance Ă©pidĂ©miologique des hernies discales opĂ©rĂ©es en lien avec lâactivitĂ© professionnelle : Etudes en rĂ©gion Pays de la Loire
Introduction.â La hernie discale opĂ©rĂ©e (HDO) a Ă©tĂ© choisie comme indicateur de pathologie rachidienne pour dĂ©terminer lâassociation entre HDO et activitĂ© professionnelle et la contribution de celle-ci dans la survenue de cette pathologie.
MĂ©thodes.â Les patients furent sĂ©lectionnĂ©s Ă partir des bases rĂ©gionales du Programme de mĂ©dicalisation des systĂšmes dâinformation (PMSI) sur : Ăąge 20 à 59 ans, acte dâHDO, en 2002 à 2003 au CHU de Nantes, pour lâĂ©tude pilote, et en 2007 à 2008 dans tous les centres chirurgicaux des Pays de la Loire, pour lâĂ©tude rĂ©gionale. Lâhistoire mĂ©dicale et professionnelle fut recueillie par auto-questionnaire postal. Le risque relatif ajustĂ© sur lâĂąge (RR) permit dâestimer lâassociation entre HDO et activitĂ© professionnelle. La contribution des secteurs dâactivitĂ© et professions au risque dâHDO fut quantifiĂ©e par la fraction de risque attribuable aux facteurs professionnels dans la population (Frap) et par la fraction de risque attribuable chez les exposĂ©s (Frae).
RĂ©sultats.â LâĂ©tude pilote incluait 146 rĂ©pondeurs Ă lâauto-questionnaire parmi les 272 patients Ă©ligibles. LâĂ©tude rĂ©gionale comprenait 1870 rĂ©pondants parmi les 3135 patients opĂ©rĂ©s en 2007 à 2008. Le RR dâHDO Ă©tait, chez les hommes, de 5,1[2,6â10,1] dans les transports et, chez les femmes, de 2,7[1,6â4,5] dans la santĂ© et de 10,2[4,4â23,3] dans lâhĂŽtellerie restauration. Les fractions de risque attribuable les plus Ă©levĂ©es Ă©taient associĂ©es Ă lâhĂŽtellerie restauration chez les femmes (Frap = 19 %, Frae = 90 %). Les professions Ă risque Ă©taient, chez les hommes, les chauffeurs (Frap = 12 %, Frae = 79 %) et les ouvriers non qualifiĂ©s de lâindustrie (Frap = 17 %, Frae = 80 %) et, chez les femmes, les employĂ©es de la fonction publique (Frap = 18 %, Frae = 66 %).
Discussion et conclusion.â Ces Ă©tudes ont confirmĂ© lâintĂ©rĂȘt dâune surveillance de lâHDO fondĂ©e sur le PMSI et ont permis dâidentifier les professions Ă risque dâHDO en population gĂ©nĂ©rale
Lucky Strike: is it a TAG (Trans-Atlantic Geotraverse) precursory hydrothermal system?
Trabalho apresentado em InterRidge Workshop on Hydrothermal Ore-forming Processes,19-22 Setembro de 2019, Hangzhou, ChinaN/
The Next Evolution of MDE: A Seamless Integration of Machine Learning into Domain Modeling
Machine learning algorithms are designed to resolve unknown behaviors by extracting commonalities over massive datasets. Unfortunately, learning such global behaviors can be inaccurate and slow for systems composed of heterogeneous elements, which behave very differently, for instance as it is the case for cyber-physical systems andInternet of Things applications. Instead, to make smart deci-sions, such systems have to continuously reïŹne the behavior on a per-element basis and compose these small learning units together. However, combining and composing learned behaviors from different elements is challenging and requires domain knowledge. Therefore, there is a need to structure and combine the learned behaviors and domain knowledge together in a ïŹexible way. In this paper we propose to weave machine learning into domain modeling. More speciïŹcally, we suggest to decompose machine learning into reusable, chainable, and independently computable small learning units, which we refer to as microlearning units.These micro learning units are modeled together with and at the same level as the domain data. We show, based on asmart grid case study, that our approach can be signiïŹcantly more accurate than learning a global behavior, while the performance is fast enough to be used for live learning
Analyzing Complex Data in Motion at Scale with Temporal Graphs
Modern analytics solutions succeed to understand and predict phenomenons in a large diversity of software systems, from social networks to Internet-of-Things platforms. This success challenges analytics algorithms to deal with more and more complex data, which can be structured as graphs and evolve over time. However, the underlying data storage systems that support large-scale data analytics, such as time-series or graph databases, fail to accommodate both dimensions, which limits the integration of more advanced analysis taking into account the history of complex graphs, for example. This paper therefore introduces a formal and practical definition of temporal graphs. Temporal graphs pro- vide a compact representation of time-evolving graphs that can be used to analyze complex data in motion. In particular, we demonstrate with our open-source implementation, named GREYCAT, that the performance of temporal graphs allows analytics solutions to deal with rapidly evolving large-scale graphs
Syndrome du canal carpien : impact de la co-exposition à des agents neurotoxiques et à des contraintes biomécaniques
Le syndrome du canal carpien est lâune des principales causes de maladie professionnelle. Dans un grand nombre de situations de travail, les travailleurs sont confrontĂ©s Ă des expositions multiples, mais peu de donnĂ©es sont disponibles sur les co-expositions des travailleurs Ă des agents chimiques neurotoxiques et Ă des contraintes biomĂ©caniques
- âŠ