
The Next Evolution of MDE:
A Seamless Integration of Machine Learning into

Domain Modeling
Thomas Hartmann∗, Assaad Moawad†, Francois Fouquet∗, and Yves Le Traon∗

∗Interdisciplinary Center for Security Reliability and Trust (SnT), University of Luxembourg. email:{first.last}@uni.lu
† DataThings S.A.R.L. email:{first.last}@datathings.com

Abstract—Machine learning algorithms are designed to resolve
unknown behaviours by extracting commonalities over massive
datasets. Unfortunately, learning such global behaviours can be
inaccurate and slow for systems composed of heterogeneous
elements, which behave very differently, for instance as it is
the case for cyber-physical systems and Internet of Things
applications. Instead, to make smart decisions, such systems have
to continuously refine the behaviour on a per-element basis and
compose these small learning units together. However, combining
and composing learned behaviours from different elements is
challenging and requires domain knowledge. Therefore, there is
a need to structure and combine the learned behaviours and
domain knowledge together in a flexible way. In this paper
we propose to weave machine learning into domain modeling.
More specifically, we suggest to decompose machine learning
into reusable, chainable, and independently computable small
learning units, which we refer to as micro learning units. These
micro learning units are modeled together with and at the same
level as the domain data. We show, based on a smart grid case
study, that our approach can be significantly more accurate than
learning a global behaviour while the performance is fast enough
to be used for live learning.

Index Terms—Domain modeling, Live learning, Model-driven
engineering, Meta modeling, Cyber-physical systems, Smart grids

I. INTRODUCTION

In order to meet future needs, software systems need to
become increasingly intelligent. A prominent example are
cyber-physical systems (CPSs) and Internet of Things (IoT)
applications, where smart objects are able to autonomously
react to a wide range of different situations, in order to
minimize human intervention [34]. Advances in software,
embedded systems, sensors, and networking technologies
have led to a new generation of systems with highly integrated
computational and physical capabilities, which nowadays are
playing an important role in controlling critical infrastructures,
like the power grid. Such systems face many predictable
situations for which behaviour can be already defined at
design time of the system. In order to react to critical
overload situations, for example, the maximum allowed load
for customers can be restricted. This is called known domain
knowledge. In addition, intelligent systems have to face
events that are unpredictable at design time. For instance, the
electric consumption of a house depends on the number of
persons living there, their activities, weather conditions, used
devices, and so forth. Despite such behaviour is unpredictable

at design time, it is identifiable and a hypothesis about it
can be already formulated and solved later by observing past
situations, once data becomes available. Sutcliffe et al., [43]
suggest to call this known unknown.

To make smart decisions, intelligent systems have to
continuously refine behaviour that is known at design time
with what can be learned only from live data to solve known
unknowns.

a) Coarse-grained vs. fine-grained learning.:
We distinguish two different learning granularities, coarse-
grained and fine-grained. Coarse-grained learning means ex-
tracting commonalities over massive datasets in order to re-
solve unknown behaviours.

Fine-grained learning, on the other hand, means instead of
searching for commonalities over the whole dataset, to apply
learning algorithms only on specific elements of the dataset.
To decide which parts of the dataset should be taken into
consideration for which learning algorithm usually requires
domain knowledge, e.g., structured in form of domain models.

Nonetheless, nowadays the most common usage of machine
learning algorithms is to resolve unknown behaviours by ex-
tracting commonalities over massive datasets. Peter Norvig de-
scribes machine learning and artificial intelligence as “getting
a computer to do the right thing when you don’t know what
that might be” [37]. Learning algorithms can infer behavioural
models based on past situations, which represent the learned
common behaviour. However, in cases where datasets are com-
posed of independent and heterogenous entities, which behave
very differently, finding one coarse-grained common behaviour
can be difficult or even inappropriate. This applies particularly
for the domain of CPSs and IoT. For example, considering
the electrical grid, the consumption of a factory follows a
very different pattern than the consumption of an apartment.
Searching for a coarse-grained, common behaviour across all
of these entities (the whole or at least large parts of the dataset)
is not helpful. Coarse-grained learning alone, which is based
on the “law of large numbers”, can be inaccurate for systems
which are composed of heterogenous elements which behave
very differently. In addition, in case of data changes, the whole
learning process needs to be fully recomputed, which often
requires a lot of time.

Instead, following a divide and conquer strategy, learning on

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Repository and Bibliography - Luxembourg

https://core.ac.uk/display/84743026?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

finer granularities can be considerably more efficient for such
problems [48], [13]. This principle is, for example, also used
in text sentiment [29], where a segmentation by the domain of
words can help to reduce complexity. Similarly, multi-granular
representations [49] have been applied to solve hierarchical
or micro-array-based [11] learning problems. Aggregating
small learning units [39] has also been successfully used
to build probabilistic prediction models [8]. In accordance
to the pedagogical concept [27], we refer to small fine-
grained learning units as “micro learning”. We believe that
micro learning is appropriate to solve the various known
unknown behavioural models in systems which are composed
of heterogenous elements which behave very diverse and can
be significantly more accurate than coarse-grained learning
approaches.

b) Modeling ML vs. domain modeling with ML.:
Applying micro learning on systems, such as the electric
grid, can potentially lead to many fine-grained learning units.
Furthermore, they must be synchronised and composed to
express more complex behavioural models. Therefore, an
appropriate structure to model learning units and their rela-
tionships to domain knowledge is required. Frameworks like
TensorFlow [1], GraphLab [32] or Infer.NET [4] also divide
machine learning tasks into reusable pieces, structured with
a model. They propose a higher level abstraction to model
the learning flow itself by structuring various reusable and
generic learning subtasks. These approaches focus solely on
modeling the learning flow without any relation to the domain
model. As a consequence, domain data and its structure
is expressed in different models than learning tasks, using
different languages and tools and leads to a separation of
domain data, knowledge, known unknowns, and associated
learning methods. This requires a complex mapping between
learning units and domain data. A similar conclusion has been
drawn by Vierhauser et al., [44] for monitoring system of
systems.

To address this complexity, in this paper we propose to
weave micro machine learning seamlessly into data modeling.
Specifically, our approach aims at:
• Decomposing and structuring complex learning tasks with

reusable, chainable, and independently computable micro
learning units to achieve a higher accuracy compared to
coarse-grained learning.

• Seamlessly integrating behavioural models which are
known at design time, behavioural models that need to be
learned at runtime, and domain models in a single model
expressed with one modeling language using the same
modeling concepts.

• Automating the mapping between the mathematical rep-
resentation expected by a specific machine learning al-
gorithm and the domain representation [4] and indepen-
dently updating micro learning units to be fast enough to
be used for live learning.

We take advantage of the modeled relationships between
domain data and behavioural models (learned or known at
design time), which implicitly define a fine-grained mapping

of learning units and domain data. This is a natural extension
of basic model-driven engineering approaches.

We implemented and integrated our approach into the open-
source framework GreyCat1. GreyCat is an extension and the
successor of the Kevoree Modeling Framework KMF [14]2.
Like EMF [5], KMF is a modeling framework and code
generation toolset for building object-oriented applications
based on structured data models. It has been specifically
designed for the requirements of CPSs and IoT.

c) Motivating case study.:
Let us consider a concrete use case. We are working together
with Creos Luxembourg, the main electrical grid operator in
Luxembourg, on a smart grid project. A major challenge in this
project is to monitor and profile various data, e.g., consumption
data, in order to be able to detect anomalies and predict
potential problems, like electric overload, before they actually
happen. The important smart grid entities for the context of
this paper are smart meters and concentrators. Smart meters
are installed at customers houses and continuously measure
electric consumption and regularly report these values to
concentrators, where the data is processed. To which concen-
trator a meter sends its data depends on various conditions,
e.g., distance or signal strength and changes frequently over
time [19].

For various tasks, like electric load prediction or detection of
suspicious consumption values, customers’ consumption data
need to be profiled independently and in real time. This is
challenging due to performance requirements but also and
mainly due to the large number of profiles, which need to be
synchronized for every new value. To model such scenarios,
we need to express a relation from a machine learning profiler
to the consumption of a customer. Since the connections from
smart meters to concentrators vary over time, a concentrator
profiler depends on the profiles of the currently connected
meters. Coarse-grained, in this context, means profiling on
the concentrator level, while fine-grained means profiling on
a smart meter level and then combining the profiles of the
smart meters connected to one concentrator together. Profiling
on a concentrator level is often needed to evaluate the electric
load situation for a specific geographical region of the grid
and many operational decisions are based on this. One coarse-
grained profiler at the concentrator level will not take real-time
connection changes and their implications in predicting the
electric load into account. Coarse-grained profiling alone can
be very inaccurate in such cases.

Another example where micro learning and composing
complex learning from smaller units can be significantly
more accurate than coarse-grained learning are recommender
systems. In such systems, coarse-grained learning is to rec-
ommend to the users of the same category or user groups,
the same products. Fine-grained learning create one micro
learning unit per user and/or per product. Again, using only
coarse-grained profiles for customers and products can be very

1http://greycat.ai/
2http://modeling.kevoree.org/

inaccurate, or generic. In case of recommender systems, micro
learning can be even combined with coarse-grained learning
by using the coarse-grained learning in cases where the user’s
fine grained learning does not have enough information to
recommend accurately.

The bottom line is that micro learning units and combining
them to larger learning tasks are especially useful for systems
which are composed of multiple independent entities which
behave very differently. CPSs and IoT systems are domains
where these characteristics apply specifically.

We evaluate our approach on a concrete smart grid case
study and show that:
• Micro machine learning for such scenarios can be more

accurate than coarse-grained learning.
• The performance is fast enough to be used for live

learning.
d) Remainder of this paper.:

The remainder of this paper is as follows. Section II introduces
the necessary background. Section III presents our model-
based micro machine learning approach. We discuss the meta
model definition used in our approach and present a modeling
language to seamlessly model machine learning and domain
data. In Section IV we evaluate our approach on a smart grid
case study, followed by a discussion in Section V. The related
work is discussed in Section VI. A conclusion and future work
is presented in Section VII.

II. BACKGROUND

In this section we introduce modeling and meta modeling
techniques and present an overview of machine learning and
meta-learning techniques.

A. Modeling Techniques

Modeling is a fundamental process in software engineer-
ing. Over time different formalisms to model and reason
about systems have been developed and used for different
purposes [41], [24] [2]. For example, entity-relationship mod-
els [7], are a general modeling concept for describing entities
and the relationships between them. They are widely used to
model schemas of relational databases. Ontologies, RDF [30],
and OWL [45] are other modeling approaches, which are
mainly used in the domain of the Semantic Web. Model-driven
engineering (MDE) [28] is probably one of the best known
modeling techniques. As an extension of MDE, an emerging
paradigm called models@run.time [36] proposes to use models
both at design and runtime to support reasoning processes,
mainly for CPSs. Most of these approaches have in common
that they describe a domain using a set of concepts (classes,
types, elements), attributes (or properties), and the relations
between them.

Closely related to modeling is the concept of meta mod-
eling. A meta model is an abstraction of the model itself.
It defines the properties of the model. A model conforms
to its meta model, comparable to how a program conforms
to the grammar of the language it is written in. The Meta

Object Facility (MOF) [33] proposed by the Object Manage-
ment Group (OMG) is a popular language for defining meta
models. Specifying formal meta information helps to make
data machine understandable.

To clarify the used terminology, Figure 1 shows the relations
between a meta model, model, and object graphs.

First, the domain is modeled using a meta model, defined
in languages like EMF, UML, or other graphical or textual
domain specific languages. Then, one or several transformation
or generation steps transform the meta model into the actual
model, usually implemented in an object-oriented program-
ming language like Java, Scala, or C++. This model is then
used in the implementation of an application. During runtime
it can be interpreted as an object graph. In this paper we use
the terms runtime model and object graph synonymously. To
refer to a meta model we use the terms meta model or domain
model.

During runtime, application data is usually never static but
evolves over time. Nonetheless, for many tasks, like machine
learning, it is usually not enough to analyse only the latest
data. Different approaches to represent and traverse temporal
data have been suggested, e.g., [18], [42]. Regardless of
the concrete implementation (in the implementation of our
framework we follow the approach presented in [21], [20]),
for this paper we assume that our object graphs evolve over
time and that we can access historical data.

B. Machine Learning Techniques

Machine learning (ML) is an evolution of pattern recogni-
tion and computational learning theory in artificial intelligence.
It explores the construction and study of algorithms that can
learn from and make predictions on data. It uses algorithms
operating by building a mathematical model from example
inputs to make data-driven predictions or decisions, rather than
strictly static program instructions [46]. The essence of ML is
to create compact mathematical models that represent abstract
domain notions of profiles, tastes, correlations, and patterns
that 1) fit well the current observations of the domain and 2)
are able to extrapolate well to new observations [35].

Several categorisations of ML techniques are possible. We
can divide these techniques according to the nature of the
used learning: In supervised learning data has predefined and
well known fields to serve as expected output of the learning
process. While in unsupervised learning input data is not
labeled and does not have a known field defined as output. ML
algorithms try to deduce structures present in the input data
to find hidden patterns. Many ML algorithms require some
parameters (called hyper-parameters) to configure the learning
process itself. In some situations, these parameters can also be
learned or adapted according to the specific business domain.
Thus, they are called meta-learning parameters and the pro-
cess of learning such parameters is called meta learning. For
the rest of the paper we will refer to such parameters simply
as parameters.

Another categorisation of ML techniques is according to
the frequency of learning: In online learning, for every new

0..1

0..1
customer

id: Long
address: String
nbResidents: Integer

Customer

id: Long
activeEnergy: Double
reactiveEnergy: Double

SmartMeter

id: Long

Concentrator

0..1

*

public interface Concentrator {
public Collection<SmartMeter> getSmartMeters();
public void setSmartMeters(Collection<SmartMeter>

 smartMeters);
}

public interface SmartMeter {
public void setCustomer(Customer customer);

 public Customer getCustomer();

public void setActiveEnergy(double activeEnergy);
 public double getActiveEnergy();

public void setReactiveEnergy(double reactiveEnergy);
 public double getReactiveEnergy();

public void setConcentrator(Concentrator
 concentrator);

public Concentrator getConcentrator();
}

public interface Customer {
public String getAddress();
public void setAddress(String address);

public int getNbResidents();
public void setNbResidents(int nbResidents);

}

Meta Model Model Object Graph

one or several
transformation or
generation steps

defined as EMF, UML, DSL, … implemented in Java, Scala, C++, …

runtime
usage

concentrator

= models@run.time

Fig. 1. Relations between a meta model, model, and object graphs

observation of input/output, the learning algorithm is executed
and its state is updated incrementally with each new observa-
tion. This is also known as live, incremental, or on-the-fly ML.
We speak of offline learning or batch learning when a whole
dataset or several observations are sent in “one shot” to the
learning algorithm. The learning technique is trained using a
small batch or a subset of observations similar to the requested
input. This type offers a case-based or context-based reasoning
because the learning is tailored for the requested input.

Finally, a ML module can be composed by combining
several ML submodules. This is usually called ensemble
methods. It is often used to create a strong ML model from
multiple weaker ML models that are independently trained.
The results of the weaker models can be combined in many
ways (voting, averaging, linear combination) to improve the
overall learning. Random forests are a powerful example of
these techniques, where the global ML module is composed
by several decision trees, each trained on a subset of data
and features. Neural networks are another example, where the
global network is composed by several neurones, each can be
seen as an independent learning unit.

A generic modeling framework for ML, should be flexible
enough to model any of these ML types. This principle served
as a guideline for the development of our framework.

III. WEAVING MICRO LEARNING AND
DOMAIN MODELING

In this section we first discuss the objectives of our ap-
proach. Then we present the meta model definition (meta-meta
model) which we use for the implementation of our approach
and detail what exactly micro learning units are. Next, we
present the syntax and semantic of our modeling language
and show concrete examples of its usage. This section ends
with presenting important implementation details.

A. Objective: Domain Modeling with ML

In order to weave micro ML into domain modeling we need
to extend modeling languages to model learned attributes and
relations and “default” ones seamlessly together. It requires
modeling languages to allow to specify in a fine-grained
way what should be learned, how (algorithm, parameters)
something should be learned, and from what (attributes, rela-
tions, learned attributes, learned relations) something should
be learned. To be appropriate for live learning, this fine-
grained learning units need to be independently computable
and updateable.

We use a meta-meta model to define this weaving. A meta-
meta model specifies the concepts which can be expressed in
a concrete meta model, i.e., it specifies what can be expressed
in meta models conforming to it. This allows domain modes
to express learning problems. Based on this, we can define a
concrete modeling language providing the necessary constructs
to weave ML into domain modeling.

B. Meta-Meta Model

We first specify the meta model definition (meta-meta
model) underlying our approach. This definition, shown in Fig-
ure 2, is inspired by MOF/EMOF and extended with concepts
to express machine learning directly in the domain modeling
language. Section III-D describes the modeling language we
built around this meta-meta model and defines the syntax and
formal semantic of the language. Elements related to ML
are depicted in the figure in light grey. We focus on these
elements since other parts comply with standard meta model
definitions, like EMOF or MOF. As can be seen in the figure,
we define meta models consisting of an arbitrary number of
meta classes and enums. Meta classes in turn have an arbitrary
number of properties. Properties are attributes, relations, or
what we call “specified properties”. Specified properties are

MetaClass

MetaModel

Enum

Property

Attribute

Relation

LearnedProperty

DerivedProperty

SpecifiedProperty Specification

Using

Parameter

Feature

LearnedAttribute

LearnedRelation

DerivedAttribute

DerivedRelation

**

1 1

*

1

1 *

Fig. 2. Meta-Meta Model

either “learned properties” or “derived properties”. Learned
properties are relations or attributes which will be learned by
a specific machine learning algorithm. A concrete learning
algorithm can be specified with the “specification” “using”.
Parameters for the learning algorithm can be defined with the
specification “parameter”. The “feature” specification allows
to access properties from other meta classes or enums.

Derived properties are similar to learned properties, however
derived properties don’t have a state associated, i.e., they don’t
need to be trained but simply compute a value. The value of
a derived attribute is calculated from the values of attributes
of other meta classes. Whereas the value of a learned attribute
depends on a state and past executions, i.e., on learning. As
we will see in Section III-F, this is reflected by the fact
that for derived properties we only generate so-called “infer”
methods whereas for learned properties we generate “learn”
and “infer” methods.

C. Micro Learning Units

The core elements of our approach are micro learning
units. As explained in Section I we use the term “micro
learning unit” to refer to small fine-grained learning units.
These units are designed to decompose and structure complex
learning tasks with reusable, chainable, and independently
computable elements. Figure 3 illustrates a concrete example
of a micro learning unit and set it into relation to the
meta and instance levels. In the top left of the figure we
see the definition of a SmartMeter meta class. Besides
two attributes, activeEnergy and reactiveEnergy,
one derived property named aboveThreshold and one
learned property, which we named powerProbabilities,
are defined. As will be detailed in Section III-F, specifying

the learned property powerProbabilities results in au-
tomatically generating the necessary code for the mapping
between the internal representation of a machine learning
algorithm and domain models. The machine learning algorithm
will be “weaved” inside the meta model instances, in this case
of SmartMeter instances. As illustrated, the micro learning
unit is an instance of a learning algorithm, contained in an
object and related to a state. It is also related to the instance
of the SmartMeter class, or more specifically to the learned
attribute. In fact, every instance of a SmartMeter class has
its own (automatically generated) instance of a micro learning
unit.

As can be seen in the figure, ML (via learned properties) can
be seamlessly integrated and mixed with domain modeling.
Section III-D presents our proposed modeling language and
details how this can be defined within the concrete syntax
of this language. The resultant ability to seamlessly define
relationships from learned properties to domain properties
and to other learned properties—and vice versa from do-
main properties to learned properties—enables composition,
reusability, and independent computability/updates of micro
learning units. An additional advantage of independent micro
learning units is that they can be computed in a distributed
way. Basically, every learning unit can be computed on a
separate machine. Such distribution strategy relies on a shared
model state, as for example presented in [22]. The computation
can then be triggered in a bulk-synchronous parallel (BSP)
way [15] over this shared state.

Our approach is built in a way that the same learning models
can be used in several tasks without the need to duplicate it.
For example, in the smart metering domain, the electricity
consumption profile of a user can be used to: predict the elec-

activeEnergy = 53
reactiveEnergy = 17
(learned) powerProbabilities =
(derived) aboveThreshold =

meter_m0:SmartMeter

activeEnergy: Double
reactiveEnergy: Double
learned powerProbabilities {
 using ‘GaussianMixtureModel’

…
}
derived aboveThreshold {

…
}

SmartMeter

m0_powerProbabilities:LearningUnit

m0_powerProbabilities :LearningState

«using››

meta level instance level micro learning unit level

Fig. 3. Schematic representation of a micro learning unit

trical load, classify users according to their profile, or to detect
suspicious consumption behaviour. The possibility to compose
micro learning units allows a segregation of learning concerns.
In case an application requires a combination of different ML
techniques, it is not necessary to mash traditional algorithms
for each step together. Instead, independent micro learning
units can be composed in a divide-and-conquer manner to
solve more complex learning problems. This is shown in more
detail in Section III-E. In addition, the learning algorithm itself
is encapsulated and the mapping between the domain model
and the data representation expected by the respective learning
algorithm is automatically generated. In this way, the learning
algorithm can be easily changed without the need to change
the interface for the domain application.

The possibility to derive attributes from others, allows
to create richer models. In fact, ensemble methods in the
ML domain, derive stronger ML models from weaker ML
models by combining the results of the smaller units. In our
framework, we enable ensemble methods from several learned
attributes (learnt through different weaker ML models) by
creating a derived attributed that combines their results.

The smart meter profiler is a representative example for
micro learning. The profiler works on a specific smart meter
instance, instead of profiling, lets say, all smart meters. In
addition, this learning unit can be reused and composed.
For example, a concentrator profiler can be defined as an
aggregation of all smart meter profilers of the smart meters
connected to the concentrator. By defining micro learning units
in a meta model, the relationships between domain classes and
micro learning units are explicitly defined and can be used to
infer for which changes a micro learning unit needs to be
recomputed.

Even though our approach promotes micro learning, there
are nonetheless scenarios where it is helpful to also learn
coarse-grained behaviour, e.g., the consumption profile of all
customers. Therefore, we allow to specify a scope for learned
properties. The default scope is called local and means that
the learning unit operates on an per instance level. For coarse-
grained learning we offer a global scope, which means that
the learning unit operates on a per class level, i.e., on all

instances of the specified class.

D. Modeling Language

In this section we introduce our modeling language to
enable a seamless definition of domain data, its structure, and
associated learning units. The following definitions intend to
avoid ambiguities and to formally specify the capabilities and
limits of our proposed language. The language is inspired
by the state of the art in meta-modeling languages (e.g.,
UML [38], SysML [16], EMF Ecore [5]). The semantic of the
language follows the one of UML class diagrams extended by
the concept of micro learning units. Many modeling languages,
like UML, are graphical. Advantages of graphical modeling
languages are usually a flatter learning curve and better
readability compared to textual modeling languages. On the
other hand, textual modeling languages are often faster to work
with, especially for experts. Also, editors and programming
environments are easier to develop and less resource hungry
for textual languages. A recent study of Ottensooser et al.,
[40] showed that complex processes and dependencies are
more efficient to express in a textual syntax than a graphical
one. For these reasons we decided to first implement a textual
modeling language. For future work we plan to propose an
additional graphical modeling language.

In the following we first present the syntax and grammar
of the language followed by a definition of its semantic. The
purpose of this formalization is to clearly detail the capabilities
and limits of our proposed language, i.e., to formally define
what can be expressed with it. Then, we illustrate by means
of the concrete smart grid use case how this language can be
used to express different combinations of machine learning
and domain modeling.

1) Syntax: The syntax of our textual modeling language is
inspired by Emfatic [9] and is an extension of the language
defined in [14]. Listing 1 shows its formal grammar. The parts
in bold show the language extensions.

This grammar basically reflects the classic structure of
object-oriented programs. Multiplicities of relationships (indi-
cated by the keyword rel) are by default unbounded, i.e., too
many. Explicit multiplicities can be defined using the with
clause, e.g., with maxBound * or with minBounds 1.

Listing 1 Grammar of our modeling language

metaModel ::= (class | enum)*
enum ::= ’enum’ ID ’{’ ID (’,’ ID)* ’}’
class ::= ’class’ ID parent? ’{’ property* ’}’
property ::= annot* (’att’ | ’rel’) ID : ID spec?
parent ::= ’extends’ ID (’,’ ID)*
annot ::= (’learned’ | ’derived’ | ’global’)
spec ::= ’{’ (feature | using | param)* ’}’
param ::= ’with’ ID (STRING | NUMBER)
feature ::= ’from’ STRING
using ::= ’using’ STRING

Meta models are specified as a list of meta classes (and
enums). Classes, Enums and their Properties are de-
fined similar to Emfatic. To distinguish static, learned, and
derived properties, we introduce annotations for attribute and
relation definitions. In addition to this, a specification block
can optionally refine the behaviour expected from the cor-
responding property. A specification can contain statements
to declare the algorithm to use, feature extraction functions,
and meta parameters to configure the used algorithms. Feature
extraction statements are using string literals where a OCL-
like notation is used to navigate to reachable properties.

2) Semantic: Our modeling language follows the formal
descriptive semantic and axioms of UML class diagrams, as
defined in [50]. We first present the necessary formalism of
UML class diagrams and then extend this formalism to include
axioms for weaving learned and derived properties into our
language. The semantic is defined with respect to the syntax
of our language, defined in Section III-D1.

Definition 1: Let {C1, C2, ..., Cn} be the set of concrete
meta classes in the meta model, we have ∀x (C1(x)∨C2(x)∨
... ∨ Cn(x)) is an axiom
In this definition we state that any object x should be at least
(inheritance) an instance of one of the meta classes defined
in the meta model. Additionally, given an object x all meta
classes verifying C(x) should be linked by a relationship of
inheritance following classical UML semantics and as defined
in [50]. This inheritance model is not described here for sake
of simplicity and to keep the emphasis on learning aspects.
In the syntax of our language, the definition of a meta class
starts either with the keyword class or enum.

Definition 2: For each meta attribute att of type T in C,
we have: ∀x, y C(x) ∧ (att(x, y)→ T (y)) is an axiom
In the second definition, we are stating that if x is an instance
of a meta class C, which has a certain meta attribute att of
type T , the value y of this meta attribute should always be of
type T . Attributes are defined using the keyword att in the
syntax of our proposed language.

Definition 3: For each relationship rel from meta class C1

to another meta class C2, we have:
∀x, y (C1(x) ∧ rel(x, y))→ C2(y) is an axiom
In this definition, if a meta class C1 has a relationship rel to
a meta class C2, and x is an instance of C1, having a relation
rel to y, this implies that y should be an instance of C2. In
the syntax of our proposed language, relationships are defined

using the keyword rel.
Definition 4: For each relationship rel from meta class C1

to C2, if ′e1..e2′ is its multiplicity value, we have:
∀x C1(x)→ (e1 ≤ ||y|rel(x, y)|| ≤ e2) is an axiom.
Similarly, for each meta attribute att in C1, if ′e1..e2′ is its
multiplicity value, we have:
∀x C1(x)→ (e1 ≤ ||y|att(C1, x) = y|| ≤ e2) is an axiom
In Definition 4, we state that an attribute or a relationship
can have minimum and maximum bounds defined in the meta
model, and any instance of the meta class should have its
attributes and relationships respecting these bounds.

Following the same approach, we extend the classical
UML definition of meta class, by adding two new kinds of
properties: learned and derived attributes and relations. In
particular, a meta learned attribute learnedatt, in a meta class
C, is a typed attribute of a type T that represents a known
unknown in the business domain. It is learned using a machine
learning hypothesis. This hypothesis can be created from a
parametrized ML algorithm, its parameters, a set of features
extracted from the business domain, and a past learned state
that represents the best fitted model of the learning algorithm
to domain data. A meta derived attribute derivedatt, is very
similar to the learnedatt with the only difference that the
deriving algorithm does not depend on a past state but only on
extracted features. In other terms, a meta derived attribute, has
a type T , a set of extracted features, a deriving parametrized
algorithm and its parameters. The same definition applies for
learned and derived relations that behave in the same manner
than attributes with only a different result type (e.g., collection
of nodes as output). In the syntax of our proposed language,
derived/learned attributes and relationships are defined with
the keywords derived att, derived rel, learned
att, and learned rel.

A step called feature selection in the meta modeling of
Cx is required in order to specify the dependencies needed in
order to learn learnedatt or derive derivedatt. The feature
selection can be done only over meta attributes reachable
within the host meta class Cx. We define this reachability
function by the following:

Definition 5: reach: (metaClass×metaAtt) 7→ boolean
reach(Cx, a) = att(Cx, a) ∨ learnedatt(Cx, a) ∨
derivedatt(Cx, a)
∨(∃Cy|rel(Cx, Cy) ∧ reach(Cy, a))

In this definition, a meta attribute a is considered as reach-
able from a meta class Cx, either if it is a meta attribute, meta
learned attribute, or meta derived attribute within the meta
class Cx itself, or if Cx has a relationship to another class
Cy , which contains a or it can be reachable from there, using
recursively another relationship.

Definition 6: Let F be the set of features to extract in order
to learn learnedatt in a meta class C, we have:
∀f ∈ F, (f ! = learnedatt) ∧ reach(C, f) is an axiom.
Similarly, in order to derive derivedatt, we have:
∀f ∈ F, (f ! = derivedatt) ∧ reach(C, f) is an axiom.

In other words, a meta learned or derived attribute can
extract their features from the meta attributes defined within

the meta class C (except itself to avoid circular reasoning) or
reachable from its relationships in a recursive way.

Definition 7: To summarize, a meta learned attribute
learnedatt has a type T , a set of feature extractions F , a
parameterized learning algorithm algp1,...,pn , a set of param-
eters p1, ..., pn, and an learned state LS.
Moreover, we have: ∀x, y C(x)∧ (learnedatt(x, y)→ T (y))
∧ y = algp1,...,pn

(eval(F), LS) is an axiom.
Similarly, a meta derived attribute derivedatt has a type

T , a set of feature extractions F , a parameterized learning
algorithm algp1,...,pn

, a set of parameters p1, ..., pn.
We have: ∀x, y C(x) ∧ (derivedatt(x, y)→ T (y))
∧ y = algp1,...,pn(eval(F)) is an axiom
In Definition 7, we present that the meta learned or derived
attribute is typed in the same manner of classical meta at-
tributes (Definition 2), and the type has to be always respected.
By extension, learned and derived relations follow strictly
the same definition than learned and derived attributes and
therefore will not be repeated here. Moreover, the learned
attribute is calculated by executing the parameterized learning
algorithm over the extracted features and the learned state.
For the derived attribute, it is calculated by executing the
parameterized deriving algorithm over only the extracted fea-
tures. Both learned and derived properties are considered as
specified properties, because they require some specifications
(features, parameters, algorithm), in order to be calculated.
This is depicted in our meta-meta model in Figure 2. Finally,
at an instance level, an object state is composed by the state
of its classical attributes, relationships, and the states of each
of its learned attributes.

As our model has a temporal dimension, every meta at-
tribute has a time dimension, and by extension, the learned
state has as well a temporal dimension. All meta attributes,
relationships, states, and parameters are replaced by their
temporal representation (For example: att 7→ att(t)). For
feature extraction, it is possible to extract the same attributes
but coming from different points in time as long as the
attributes are reachable.

E. Model Learning Patterns

Similarly to how modeling methodologies have led to design
patterns to solve common problems, in this subsection we
describe patterns to weave machine learning into models. We
describe how our language can be used on the concrete smart
grid use case with different combinations of machine learning
and domain modeling. The section starts with a simple domain
model, then explains different combinations of domain data
and learning and ends with a more complex example on how
different learnings can be composed.

1) Weaving learned Attributes into Domain Classes: Let’s
start with a simple example. Listing 2 shows the defini-
tion of a class SmartMeter. It contains two attributes
activeEnergy and reactiveEnergy and a relation to a
customer. These are the typical domain attributes defining
a SmartMeter class.

In this class we define a learned attribute anomaly that
automatically detects abnormal behaviour, based on profiling
active and reactive energy. To do so, we specify to use a
Gaussian anomaly detection algorithm as learning algorithm.
Based on this definition, the code generator of GreyCat
generates the SmartMeter domain class—including features
like persistence—and weaves the necessary machine learning
code into it. A template of the underlying Gaussian mixture
model algorithm is implemented in GreyCat and used by
the generator to weave the machine learning code into the
domain class. In this example, the attribute anomaly can be
seamlessly accessed from all SmartMeter instances. In fact,
the attribute can be used similar to “normal” ones (i.e., not
learned ones), however instead of the default getter and setter
methods, the generated API offers a train and an infer
method. This example shows how learned attributes can be
seamlessly woven into domain classes.

Listing 2 Meta model of a smart meter with anomaly detection

class SmartMeter {
att activeEnergy: Double
att reactiveEnergy: Double
rel customer: Customer
learned att anomaly: Boolean {
from "activeEnergy"
from "reactiveEnergy"
using "GaussianAnomalyDetection"

}
}

2) Defining a Learning Scope for coarse-grained Learn-
ing in Domain Models: Listing 3 shows an example of
a power classification problem. In this listing, first an
enumeration ConsumptionType with three categories of
consumption types (low, medium and high) is defined.
Then, we extend the class SmartMeter to add a global
classify attribute which classifies users according to their
consumption behaviours. It learns from activeEnergy,
reactiveEnergy, and nbResidents.
This example shows coarse-grained learning, where all in-
stances of a domain class contribute to one learning unit.
It demonstrates that attribute extractions cannot only happen
at the level of attributes of the current instance but also
to any reachable attribute from the relation of the current
instance. In this example, the attribute nbResidents, which
is the number of residents within the household of each
customer, is extracted from a concrete Customer instance of
a concrete SmartMeter instance. Moreover, it shows how
to specify the machine learning hyper-parameters (here the
learning rate and regularization rate) within the learned at-
tribute using the keyword with. With this definition, GreyCat
generates, besides the enum ConsumptionType, a domain
class SmartMeter. As in the previous example, the machine
learning code for the linear classification is directly woven
into the generated domain class. Again, a template of a linear
classification algorithm is integrated in GreyCat and used by
the generator to generate the concrete code.

Listing 3 Meta model of a power classifier

enum ConsumptionType { LOW, MEDIUM, HIGH }
class SmartMeter{

[...]
global learned att classify: ConsumptionType {

from "customer.nbResidents"
from "activeEnergy"
from "reactiveEnergy"
with learningRate 0.001
with regularizationRate 0.003
using "LinearClassifier"

}
}

3) Modeling Relations between Learning Units and Do-
main Classes: Listing 4 shows the meta class of a
SmartMeterProfiler. In a first step we define that such
profilers have relationships to SmartMeter instances and
vice versa. Then, we extract several attributes from this
relationship. For instance, we get the hour of the day (with
a GreyCat built-in function Hour(date)), the active and
reactive energy and calculate the square value. Attribute
extractions can be any mathematical operations over the
attributes that are reachable from the relationships defined
within the class. In this example, the profiler learns the prob-
abilities of the different power consumptions, hourly based,
using a Gaussian mixture model algorithm [23]. For this
scenario, GreyCat generates the domain classes SmartMeter
and SmartMeterProfiler. The machine learning code,
based on a template implementation of a Gaussian mixture
model algorithm, is injected into the generated code. The
SmartMeterProfiler is generated as a regular domain
class (with a learned attribute).

Listing 4 Meta model of a smart meter profiler

class SmartMeterProfiler {
rel smartMeter: SmartMeter
learned att powerProbabilities: Double[] {

from "Hour(smartMeter.time)"
from "smartMeter.activeEnergyˆ2"
from "smartMeter.reactiveEnergyˆ2"
using "GaussianMixtureModel"

}
}

class SmartMeter {
[...]
rel profile: SmartMeterProfiler

}

4) Decomposing complex Learning Tasks into several Mi-
cro Learning Units: For the last example, we show how
to use domain information to derive an advanced profiler
at the concentrator level using the fine-grained profilers at
the smart meters. First, we define a class Concentrator
that contains relations to the connected smart meters. Then,
we define a ConcentratorProfiler with a relation to
an Concentrator and vice versa. Inside this profiler, we
derive an attribute powerProbabilities using the key-

word derived and using an aggregation function that
combines the probabilities from the fine-grained profiles. This
example shows how fine-grained machine learning units can
be combined to larger ML units. Similar to the previous exam-
ples, GreyCat generates, based on this definition, two domain
classes: Concentrator and ConcentratorProfiler.

Listing 5 Meta model of a concentrator and its profiler

class Concentrator {
rel connectedSmartMeters: SmartMeter
rel profile:ConcentratorProfiler

}

class ConcentratorProfiler {
rel concentrator: Concentrator
derived att powerProbabilities: Double[] {
from concentrator.connectedSmartMeters

.profile
using "aggregation"

}
}

5) Coarse-grained Learning: As discussed, our approach
also allows coarse-grained learning. The following example
shows how coarse-grained learning can be expressed with our
proposed language. A class ConcentratorProfiler is
used to profile the consumption values of all connected smart
meters using a GaussianMixtureModel algorithm. This
example is similar to the previous one but instead of aggre-
gating the fine-grained learned profiles of the individual smart
meters (fine-grained learning), in this example we directly
profile the consumption values of the smart meters connected
to a concentrator in a coarse-grained manner.

Listing 6 Meta model of a coarse-grained consumption profiler

class Concentrator {
rel connectedSmartMeters: SmartMeter
rel profile:ConcentratorProfiler

}

class ConcentratorProfiler {
rel concentrator: Concentrator
learned att powerProbabilities: Double[] {
from "Hour(concentrator.

connectedSmartMeters.time)"
from "concentrator.connectedSmartMeters.

activeEnergyˆ2"
from "concentrator.connectedSmartMeters.

reactiveEnergyˆ2"
using "GaussianMixtureModel"

}
}

F. Framework Implementation Details

Our approach is implemented as a full modeling environ-
ment integrated into IntelliJ IDE3. The development process
with our framework follows default MDE approaches, starting

3https://www.jetbrains.com/idea/

with a meta model definition. The complete LL grammar of
our extended modeling language is available as open-source4.
Therefore, our framework contains a code generator based on
Apache Velocity5 to generate APIs for object-oriented lan-
guages. Currently, our generator targets Java and TypeScript.

The generated classes can be compared to what is generated
by frameworks like EMF. In the following, we focus on the
ML extensions. According to what is defined in the meta
model, our code generator “weaves” the concrete machine
learning algorithms into the generated classes and also gen-
erates the necessary code to map from a domain representa-
tion (domain objects and types) to the internal mathematical
representation expected by the learning algorithm (double
arrays, matrices, etc) and vice versa. Various machine learning
algorithms can be integrated in our framework. Currently, we
implemented the following algorithms:
• Regression: Live linear regression
• Classification: Live decision trees, Naive Bayesian mod-

els, Gaussian Bayesian models
• Clustering: KNN,StreamKM++
• Profiling: Gaussian Mixture Models (Simple & Multino-

mial)
For every derived property our generator adds an infer
method to the generated class, which contains the code to
compute the property according to its meta model definition.
Similar, for every learned property our generator adds an
infer to read the state of the learning unit and a train
method to trigger the injected learning algorithm.

Since our framework targets CPSs and IoT applications it
has a strong focus on performance. Thus, we do not rely
on in-memory models but instead on a specialized graph
storage. This has been developed to handle the high volatility
of learning unit states.

Since relationships between domain classes and micro learn-
ing units are explicitly defined, they can be used during
runtime to infer for which changes a micro learning unit needs
to be recomputed. This is realized using change listeners and
an asynchronous message bus. As a result, our framework sup-
ports fully independent updates of learning units. Leveraging
the underlying shared graph storage model this can even be
done in a distributed manner.

IV. EVALUATION

In this section we evaluate our approach based on two
key performance indicators: 1) can micro machine learning
be more accurate than coarse-grained learning and 2) is the
performance of using micro machine learning fast enough to
be used for live learning.

A. Setup

We evaluate our approach on the smart grid use case
introduced in Section I. We implemented a prediction engine
for customers’ consumption behaviour using our modeling

4https://github.com/kevoree-modeling/dsl
5http://velocity.apache.org/

framework. This engine predicts the consumption behaviour
based on live measurements coming from smart meters. We
implemented this evaluation twice, once with a classical
coarse-grained approach and another time with our micro
learning based approach. The goal is to demonstrate that our
micro learning-based approach can be more accurate while
remaining fast enough to be used for live learning.

For our evaluation we consider 2 concentrators and 300
smart meters. We use publicly available smart meter data
from households in London6. The reason why we use publicly
available data instead of data from our industrial partner
Creos is that this data is confidential what would prohibit to
publish this data for reproducibility. Our evaluation is based
on 7,131,766 power records, from where we use 6,389,194
records for training and 742,572 records for testing. The used
training period is 15/08/2012 to 21/11/2013 and the testing
period from 21/11/2013 to 08/01/2014.

For the first evaluation, we use a coarse-grained profiler on
the concentrators. All smart meters send their data regularly
to concentrators where the sum of all connected smart meters
is profiled. In a second evaluation we use our micro learning-
based approach and use one individual profiler for every smart
meter and define an additional profiler for every concentrator,
which learn from the individual profilers of the connected
smart meters. As learning algorithm we use in both cases
Gaussian mixture models, with 12 components, profiling the
consumption over a 24 hours period, resulting in 2-hours
resolution (24/12=2). We train the profilers for both cases
during the training period, then we use them in the testing
period to estimate/predict the power consumptions for this
period.

We simulate regular reconfigurations of the electric grid, i.e.,
we change the connections from smart meters to concentrators.
This scenario is inspired by the characteristics of a typical real-
world smart grid topology, as described in [19]. Every hour
we randomly change the connections from smart meters to
concentrators. At any given point in time, each concentrator
has between 50 and 200 connected meters.

We performed all evaluations on an Intel Core i7 2620M
CPU with 16 GB of RAM and Java version 1.8.0 73. All
evaluations are available at GitHub7.

We use the traditional holdout method, where the dataset
is separated into a training set and a testing set, instead of
a k-fold cross-validation method. When it comes to time-
series, the seasonal effect can introduce a bias when splitting
the dataset in equivalent sets, required by the k-fold cross-
validation method [12]. Moreover, in our evaluation we want
to demonstrate the accuracy of modelling with micro learning
units rather than evaluating the efficiency of the ML algorithm
itself.

6http://data.london.gov.uk/dataset/smartmeter-energy-use-data-in-london-
households

7https://github.com/kevoree-modeling/experiments

B. Accuracy

First, we compare the coarse-grained profiling to the micro
learning approach to predict the power consumption over the
testing set. Figure 4 shows the results of this evaluation. In
both plots, the blue curve represents the testing dataset, i.e.,
the real power consumption that has to be predicted.

The coarse-grained profiler is not affected by the topol-
ogy changes. In fact, the profiler at the concentrator level
has learned an average consumption that is always replayed
without considering the connected smart meters. This explains
the periodic, repetitive aspect of the prediction curve.

In contrary, the micro learning approach defines a profiler
on the concentrator as a composition of the profilers of all
connected smart meters, as shown in the meta model in
Listing 6. In case the topology changes, e.g., a smart meter
disconnects, the concentrator profiler (composed of several
smart meter profilers) will no longer rely on the profiler of
the disconnected smart meter. As depicted in Figure 4, for
the micro machine learning profiling, the plotted curve is
significantly closer to the curve of the real testing set than
the coarse-grained learning. Although, both uses the same
profiling algorithm: a Gaussian mixture model. For readability
reasons we only display the first 12 days of predictions.
Prediction curves in case of micro learning are very close (even
hard to distinguish) to the real testing set.

We plot the histogram of the prediction errors for both,
coarse-grained and micro learning in Figure 6. It shows the
distribution of the prediction error of both cases. Overall,
micro learning leads to an average error of 3,770 wh, while
coarse-grained learning leads to an average error of 6,854
wh. In other words, the error between the prediction and real
measurement is divided by two. Knowing that the average
power consumption overall the testing set is 24,702 wh, we
deduce that the micro learning profiling has an accuracy of
85%, while coarse-grained learning has an accuracy of 72%.
The accuracy is calculated by (1-avgError/avgPower). Figure 5
depicts the average prediction error and associated confidence
interval for both methods: fine-grained and coarse-grained. We
can observe that the confidence intervals are around 12kWh for
the fine-gained method and respectively 21kWh for the coarse-
grained approach. Based on these results, we can conclude that
micro learning can be significantly more accurate than coarse-
grained learning.

A noticeable result is that the same algorithm can lead to
a better accuracy when used at a smaller level and combined
with the domain knowledge. Therefore, we argue that this de-
cision is very important and motivate by itself the reason why
we focus this contribution on offering modeling abstractions
for this purpose.

C. Performance

In terms of performance, Table I shows the time needed in
seconds to load the data, versus the time needed to perform
the live profiling for different numbers of users and power
records. For instance, for 5000 users and their 150 million
power records, it takes 1927 seconds to load and parse the

Number of Number of Loading data Profiling
users records time in s. time in s.
10 283,115 4.28 1.36

50 1,763,332 21.94 7.20

100 3,652,549 44.80 14.44

500 17,637,808 213.80 67.12

1000 33,367,665 414.82 128.53

5000 149,505,358 1927.21 564.61

TABLE I
LOADING TIME AND PROFILING TIME IN SECONDS. SCALABILITY TEST

OVER 5000 USERS AND 150 MILLIONS POWER RECORDS

whole dataset from disk (around 32 minutes, knowing that the
dataset is around 11 GB large). However, only 564 seconds
are spent for profiling (less than 10 minutes).

Another observation that can be deduced from Table I
is that both loading and training time are linear with the
number of records loaded (O(n) complexity). A considerable
performance increase can be achieved by distributing and
parallelizing the computation, especially using micro learn-
ing where every profile can be computed independently. We
decided to present results without the usage of a distributed
storage backend (e.g., HBase8). This would pollute compu-
tation times due to networking and caching effects. However,
our results allow to meet the performance requirements of case
studies like the smart grid. Indeed, during these evaluations
our modeling framework ingest more than 60,000 values
per seconds on a single computer. This is comparable to
data processing frameworks like Hadoop [6]. Moreover, fine-
grained machine learning units can be computed independently
and can therefore be easily processed in parallel. In fact, every
learning unit can naturally be computed in an own process.

D. General applicability of the presented approach and mod-
eling language

In this section, we show the general applicability of our
approach and how it can be applied to different domains.
Therefore, we discuss examples from different domains and
show how they can be modeled using our approach and
proposed modeling language. This shows the benefits of a
seamless integration of machine learning into domain mod-
eling.

Let us take recommender systems as a first additional
example outside the smart grid domain. In recommender
systems, the goal is to monitor prior actions of users in order
to recommend potential future actions. Applied to sales, for
instance, this can be translated into potential next items to
sell or next movies to watch. Different types of recommender
systems exist [25]. Some recommender systems cluster users
to similar behaviours and thus recommend the items to buy
according to what other users of the same behaviour group
already bought. These system are known as user-user rec-
ommender systems [25]. Other recommender systems cluster

8https://hbase.apache.org/

21/11/2013 03/12/2013

21/11/2013 03/12/2013

Fig. 4. Coarse-grained profiling (top) vs micro learning profiling (bottom)

0
10

,0
00

20
,0

00
30

,0
00

micro learning error coarse-grained
learning error

Fig. 5. Average prediction error and confidence intervals (in Watt per Hours, Wh)

Fig. 6. Power prediction error histograms

items according to their similarities or complementarity and
thus suggest to a user to buy the items that are usually
bought together. These systems are known as item-item rec-
ommender systems [25]. Other systems ask users about their
preferences and from these preferences they recommend the
most suitable products. These systems are known as user-item
recommender [25].

With our proposed modeling language and approach, we can
integrate these 3 types within the same model, thus allowing
system designers to change from one type of recommendation
system to another—or even have all 3 types of recommen-
dations at the same time, at a minimum cost (by learning the
profiles once, and reusing many times). For instance, instead of
going to a coarse-grained recommender system by grouping
users or items together, we can go to a more fine-grained
approach, by attaching a profile to every user and to every
product. These profiles represent an abstract mathematical
notion of taste in a N-dimensional space in which we can
quickly compare users or items together. Moreover, these
profiles can be updated in live after every purchase. Then,
in order to achieve a user-user recommender system, we
can create a derived clustering algorithm that compares and
groups users with similar profiles together. The same can be
done for the item-item recommender systems by clustering
the products with the same profiles together. A user-item
recommender system can be achieved by a derived algorithm
that fast search for products that match a user profile with
an item profile. This way, we manage to separate the different
concepts in different layers that are reusable. Moreover, we can
reuse business knowledge in machine learning (for instance by
not recommending past items already bought if the learning
algorithm has access to the historical purchases of the users),
and vice versa, by taking business decisions based on machine
learning results (recommending new product to sell). Listing 7
shows an example meta model of such a recommender system.

A second example is the domain of transportation systems.
The goal is to optimize the public transportation by suggesting
to people different transportation alternatives. Again, in this
domain, machine learning can be modeled by fine-grained
profilers and recommender systems can be built on top of these
profilers. For instance, in [47] the authors create profiles for
each of the following:

• price of taxi fare per distance unit according to the hour
of the day

• traffic on different road segments
• parking place availabilities

Each of these profiles can be modeled as a completely indepen-
dent, fine grained, and reusable learning unit in our modeling
language. A recommender system can calculate the recom-
mendation by deriving the information from these different
learning units. Moreover, the advantage of our framework is
that the business domain knowledge is at the same level as the
learned knowledge. For instance, a learning unit can depend
directly on the bus or train schedules, if they are known in
advance. Listing 8 shows an example meta model of how such

Listing 7 Meta model of a recommender system

enum Category { ELECTRONIC, BOOKS,
MUSIC, MOVIES, ... }

class Index{
rel users: User
rel products: Product

}

class User {
att userId: Long
att name: String
[...]
rel purchasedProducts: Product
rel profile: UserProfiler

with maxBound 1
}
class Product {

att productId: Long
rel category: Category

with minBound 1
with maxBound 1

att price: Double
[...]
rel purchasedBy: Customer

rel profile : ProductProfiler
with maxBound 1

}
class UserProfiler {

rel user: User
learned rel userProfile:

TasteProfile {
from "user.purchasedProducts"
using "IncrementalSVD"

}
}
class ProductProfiler {

rel product: Product
learned rel productProfile:

TasteProfile {
from "product.category"
from "product.price"
using "IncrementalSVD"

}
}
class TasteProfile {

att svdVector: double[]
}

class UserUserRecommender {
rel index: Index
derived rel similarUsers: User {

from index.users.profile
using "ClusteringAlg"

}
}
class ItemItemRecommender {

rel index: Index
derived rel similarItems: Item {

from index.items.profile
using "ClusteringAlg"

}
}
class UserItemRecommender {

rel index: Index
rel currentUser: User
derived rel directRecommender: Item{

from currentUser.profile
from index.items.profile
using "SimilarityAlg"

}
}

transportation recommender system could be modeled in our
proposed approach.

E. Threats to validity

We decided to evaluate our approach on an end-to-end real-
world case study. Despite that we showed the usefulness of
the approach for other domains, one threat to validity remains
that the evaluation case study might be especially appropriate
for the presented solution. Additional case studies need to be
considered to better estimate the general applicability of the
presented approach. Nonetheless, the evaluated case study is
representative for the domains targeted by our approach. An-
other threat to validity might be the sampling rate of the smart
meter measurements of the used case study, which could affect
the error rate, e.g., missing peaks due to averaging intervals.
However, the used sampling rate is already comparatively low
with respect to the used dataset. Therefore, this risk is rather
low.

V. DISCUSSION

Weaving machine learning into domain modeling opens up
interesting possibilities in the intersection of meta learning and
meta modeling. Meta learning is about learning the parameters
of the learning class itself and adapting these parameters to
the specific business domain where the learning is applied to.
The following points are considered as typical meta learning
problems:
• Changing the inference algorithm.
• Adding or removing more input attributes.
• Modifying the math expression of an attribute.
• Changing learning parameters (for ex. learning rate).
• Chaining or composing several learning units.

Such changes can be introduced during the execution of the
system, reflecting a new domain knowledge that have to be
injected. Therefore, considering that we model learning pa-
rameters, this makes it necessary to enable meta class changes
at runtime. This feature is enabled in our modeling framework.
However, changing learning algorithms or parameters can
occur more often than classical meta model changes. This
opens up the reflection on new research directions about
frequent meta model updates.

We developed our modeling framework for micro learn-
ing. Nonetheless, as discussed, we support fine-grained but
also coarse-grained learning. However, our framework—and
approach—is clearly designed for micro learning and is there-
fore mainly useful for systems which are composed of several
elements which behave differently. Examples for such systems
are CPSs, IoT, and recommender systems. For systems dealing
mainly with large datasets of “flat data”, i.e., unstructured
data without complex relationships between, our model-based
micro learning approach is less beneficial. Instead, our ap-
proach is mostly beneficial for systems dealing with complex
structured and highly interconnected domain data which have
to continuously refine behavioural models that are known at
design time with what can be learned only from live data to
solve known unknowns. A current restriction of our approach

Listing 8 Meta model of a transportation recommender system

enum Transportation {CAR, TAXI, BUS, TRAIN,
BICYCLE, WALKING}

class Index {
rel users: User
rel taxis: Taxi}

class User {
att userId: Long
att name: String
att GPSLongitude: double
att GPSLatitude: double
rel preferredTransportationMeans:

Transportation
rel userProfile: PositionProfiler}

class Taxi {
att taxiId: Long
att name: String
att GPSLongitude: double
att GPSLatitude: double
att pricePerKm: double
rel taxiProfile: PositionProfiler}

class PositionProfiler {
rel user: User
learned att userProfile: double[] {

from "user.GPSLongitude"
from "user.GPSLatitude"
using "GaussianMixtureModel"}}

class TaxisPriceProfilers {
rel index: Index
derived att averageTaxiPrice: double {

from index.taxis.pricePerKm
using "Averaging"}}

class RoadSegment {
att roadId: Long
att gpsLongituteStart: double
att gpsLongituteEnd: double
att gpsLatitudeStart: double
att gpsLatitudeEnd: double
att currentTraffic: int
learned att roadTrafficProfile: double[] {

from "currentTraffic"
using "GaussianMixtureModel"}}

class Parking {
att parkingId: Long
att parkingName: String
att currentEmptyPlaces: int
learned att emptyPlaceProfile: double[] {

from "currentEmptyPlaces"
using "GaussianMixtureModel"}}

class BusLine {
att busLineId: Long
att busLineName: String
att busSchedule: double[]}

class TrainLine {
att trainLineId: Long
att trainLineName: String
att trainSchedule: double[]}

class Map {
rel roads: RoadSegment
rel busLines: BusLine
rel trainLines: TrainLine
rel parkings: Parking}

class TransportationRecommender {
rel user: User
rel taxiPriceProfiler: TaxisPriceProfilers
rel map: Map
derived att recommendation: Transportation {

from user.userProfile
from taxiPriceProfiler.averageTaxiPrice
from map.roads.roadTrafficProfile
from map.trainLines.trainSchedule
from map.busLines.busSchedule
from map.parkings.emptyPlaceProfile
using "customTransportationAlgorithm"}}

is that it considers only known unknowns, i.e., it is necessary
to know what is unknown and what can be learned. Moreover,
our approach focuses on live learning scenarios where only
small learning units, which individually are fast to recompute,
have to be updated. While this is especially useful in cases
where only few micro learning units, i.e., only parts of the
model need to be updated, it is less beneficial for cases where
the whole model needs to be recomputed. In such cases, batch
learning methods can be more efficient.

VI. RELATED WORK

TensorFlow [1] is an interface for expressing machine
learning algorithms and an execution engine to execute these
on a wide range of devices from phones to large clusters. A
TensorFlow computation is represented as a directed graph.
Nodes in the graph represent mathematical operations, called
ops, while the edges represent multidimensional data arrays,
called tensors. An op takes zero or more tensors, performs
computations, and produces zero or more tensors. Two phases
are distinguished in TensorFlow. A construction phase where
the graph is assembled and an execution phase which uses a
session to execute ops in the graph. TensorFlow is used within
Google for a wide variety of projects, both for research and for
use in Google’s products. Similar to our approach, TensorFlow
allows to model ML at a higher level of abstraction. However,
unlike in our approach ML is expressed in its own model aside
from the domain model and not connected to it. TensorFlow
is adapted for image and video recognition, whereas our
approach is adapted for learning from frequently changing
domain data.

GraphLab [32] goes in a similar direction than TensorFlow.
Low et al., propose an approach for designing and imple-
menting efficient and provably correct parallel ML algorithms.
They suggest to use a data graph abstraction to encode the
computational structure as well as the data dependencies of the
problem. Vertices in this model correspond to functions which
receive information on inbound edges and output results to out-
bound edges. Data is exchanged along edges between vertices.
GraphLab aims at finding a balance between low-level and
high-level abstractions. In contrary to low-level abstractions
GraphLab manages synchronization, data races, and deadlocks
and maintains data consistency. On the other side, unlike
high-level abstractions GraphLab allows to express complex
computational dependencies using the data graph abstraction.
In Low et al., [31] present a distributed implementation
of the GraphLab abstraction. Like TensorFlow, GraphLab is
an interface for expressing ML algorithms and an execution
engine. While there are similarities, like the idea that ML
algorithms should be expressed with a higher-lever abstraction,
our approach focuses on weaving ML algorithms into domain
modeling. This allows to use results from learning algorithms
in the same manner than other domain data.

In [4] Bishop proposes a model-based approach for ML. He
introduces a modeling language for specifying ML problems
and the corresponding ML code is then generated auto-
matically from this model. As a motivation Bishop states

the possibility to create highly tailored models for specific
scenarios, as well as for rapid prototyping and comparison
of a range of alternative models. With Infer.NET he presents
a framework for running Bayesian inference in graphical
models. Similar to Bishop we propose to express ML problems
in terms of a modeling language and automate the mapping
of a domain problem to the specific representation needed by
a concrete ML algorithm. While Bishop suggests to specify
ML problems in separate models with a dedicated modeling
language, our approach extends domain modeling languages
with the capability to specify ML problems together with
domain models using the same modeling language. This allows
to decompose learning into many small learning units which
can be seamlessly used together with domain data.

Domingos et al., [10] propose an approach for incremental
learning methods based on Hoeffding bounds. They suggest to
build decision trees on top of this concept and show that these
can be learned in constant memory and time per example,
while being very close to the trees of conventional batch
learners. With Massive Online Analysis (MOA) [3] Bifet et
al., present an implementation and a plugin for WEKA [17]
based on Hoeffding trees. Our contribution is a methodology
to weave micro ML into data modeling to support applications
which need online analysis of massive data streams.

Hido et al., [26] present a computational framework for
online and distributed ML. There key concept is to share
only models rather than data between distributed servers.
They propose an analytics platform, called Jubatus, which
aims at achieving high throughput for online training and
prediction. Jubatus focus on real-time big data analytics for
rapid decisions and actions. It supports a large number of
ML algorithms, e.g., classification, regression, and nearest
neighbour. Jubatus only shares local models, which are smaller
than datasets. These models are gradually merged. Jubatus,
like our approach, allows independent and incremental com-
putations. However, Jubatus doesn’t aim at combining domain
modeling and ML, neither does it allow to decompose a
complex learning task into small independent units, which cab
be composed.

VII. CONCLUSION AND FUTURE WORK

Coarse-grained learned behavioural models do not meet the
emerging need for combining and composing learnt behaviours
at a fine-grained level, for instance for CPSs and IoT systems,
which are composed of several elements which are diverse
in live behaviours. In this paper we proposed an approach to
seamlessly integrate micro machine learning units into domain
modeling, expressed in a single type of model, based on one
modeling language. This allows to automate the mapping be-
tween the mathematical representation expected by a specific
machine learning algorithm and the domain representation.
We showed that by decomposing and structuring complex
learning tasks with reusable, chainable, and independently
computable micro learning units the accuracy compared to
coarse-grained learning can be significantly improved. We
demonstrated that the ability to independently compute and

update micro learning units makes this approach fast enough
to be used for live learning. Besides simplifying the usage
(flatter learning curve), a graphical language can be more
intuitive for many users, especially for non developers. We
are also working on integrating additional machine learning
algorithms in our framework to make it applicable for a
broader range of problems. For example, for stream clustering,
we are planning to include and experiment with algorithms
like cluStream, clusTree, DenStream, D-Stream, and CobWeb.
In addition, we are experimenting with adding GPU support
for the computation of ML algorithms to our framework to
investigate the advantages and disadvantages of it for different
use cases.

REFERENCES

[1] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C.,
Corrado, G.S., Davis, A., Dean, J., Devin, M., et al.: Tensorflow: Large-
scale machine learning on heterogeneous distributed systems. arXiv
preprint arXiv:1603.04467 (2016)

[2] Bettini, C., Brdiczka, O., Henricksen, K., Indulska, J., Nicklas, D.,
Ranganathan, A., Riboni, D.: A survey of context modelling and
reasoning techniques. Pervasive Mob. Comput. 6(2), 161–180 (2010).
DOI 10.1016/j.pmcj.2009.06.002. URL http://dx.doi.org/10.1016/j.pmcj.
2009.06.002

[3] Bifet, A., Holmes, G., Kirkby, R., Pfahringer, B.: Moa: Massive online
analysis. The Journal of Machine Learning Research 11, 1601–1604
(2010)

[4] Bishop, C.M.: Model-based machine learning. Philosophical Transac-
tions of the Royal Society of London A: Mathematical, Physical and
Engineering Sciences 371(1984) (2012). DOI 10.1098/rsta.2012.0222.
URL http://rsta.royalsocietypublishing.org/content/371/1984/20120222

[5] Budinsky, F., Steinberg, D., Ellersick, R.: Eclipse Modeling Framework
: A Developer’s Guide (2003)

[6] Carstoiu, D., Cernian, A., Olteanu, A.: Hadoop hbase-0.20. 2 perfor-
mance evaluation. In: New Trends in Information Science and Service
Science (NISS), 2010 4th International Conference on, pp. 84–87. IEEE
(2010)

[7] Chen, P.P.S.: The entity-relationship model—toward a unified
view of data. ACM Trans. Database Syst. 1(1), 9–36 (1976). DOI 10.
1145/320434.320440. URL http://doi.acm.org/10.1145/320434.320440

[8] Choetkiertikul, M., Dam, H.K., Tran, T., Ghose, A.: Predicting delays
in software projects using networked classification (t). In: Automated
Software Engineering (ASE), 2015 30th IEEE/ACM International Con-
ference on, pp. 353–364. IEEE (2015)

[9] Daly, C.: Emfatic language reference (2004)
[10] Domingos, P., Hulten, G.: Mining high-speed data streams. In: Pro-

ceedings of the Sixth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’00, pp. 71–80. ACM,
New York, NY, USA (2000). DOI 10.1145/347090.347107. URL
http://doi.acm.org/10.1145/347090.347107

[11] Durgesh, K.S., Lekha, B.: Data classification using support vector
machine. Journal of Theoretical and Applied Information Technology
12(1), 1–7 (2010)

[12] Esbensen, K.H., Geladi, P.: Principles of proper validation: use and abuse
of re-sampling for validation. Journal of Chemometrics 24(3-4), 168–
187 (2010). DOI 10.1002/cem.1310. URL http://dx.doi.org/10.1002/
cem.1310

[13] Fink, C.R., Chou, D.S., Kopecky, J.J., Llorens, A.J.: Coarse- and fine-
grained sentiment analysis of social media text. Johns Hopkins APL
Technical Digest 30(1), 22–30 (2011)

[14] Fouquet, F., Nain, G., Morin, B., Daubert, E., Barais, O., Plouzeau, N.,
Jézéquel, J.: Kevoree modeling framework (KMF): efficient modeling
techniques for runtime use. CoRR abs/1405.6817 (2014). URL http:
//arxiv.org/abs/1405.6817

[15] Gerbessiotis, A., Valiant, L.: Direct bulk-synchronous parallel algo-
rithms. Journal of Parallel and Distributed Computing 22(2), 251
– 267 (1994). DOI http://dx.doi.org/10.1006/jpdc.1994.1085. URL
http://www.sciencedirect.com/science/article/pii/S0743731584710859

[16] Group, O.M.: Tech. rep.

[17] Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten,
I.H.: The weka data mining software: An update. SIGKDD Explor.
Newsl. 11(1), 10–18 (2009). DOI 10.1145/1656274.1656278. URL
http://doi.acm.org/10.1145/1656274.1656278

[18] Han, W., Miao, Y., Li, K., Wu, M., Yang, F., Zhou, L., Prabhakaran,
V., Chen, W., Chen, E.: Chronos: A graph engine for temporal graph
analysis. In: Proceedings of the Ninth European Conference on Com-
puter Systems, EuroSys ’14, pp. 1:1–1:14. ACM, New York, NY, USA
(2014). DOI 10.1145/2592798.2592799. URL http://doi.acm.org/10.
1145/2592798.2592799

[19] Hartmann, T., Fouquet, F., Klein, J., Traon, Y.L., Pelov, A., Toutain, L.,
Ropitault, T.: Generating realistic smart grid communication topologies
based on real-data. In: 2014 IEEE International Conference on Smart
Grid Communications, SmartGridComm 2014, Venice, Italy, Novem-
ber 3-6, 2014, pp. 428–433 (2014). DOI 10.1109/SmartGridComm.
2014.7007684. URL http://dx.doi.org/10.1109/SmartGridComm.2014.
7007684

[20] Hartmann, T., Fouquet, F., Nain, G., Morin, B., Klein, J., Barais,
O., Traon, Y.L.: A native versioning concept to support historized
models at runtime. In: Model-Driven Engineering Languages and
Systems - 17th International Conference, MODELS 2014, Valencia,
Spain, September 28 - October 3, 2014. Proceedings, pp. 252–268
(2014). DOI 10.1007/978-3-319-11653-2 16. URL http://dx.doi.org/
10.1007/978-3-319-11653-2 16

[21] Hartmann, T., Fouquet, F., Nain, G., Morin, B., Klein, J., Traon, Y.L.:
Reasoning at runtime using time-distorted contexts: A models@run.time
based approach. In: The 26th International Conference on Software
Engineering and Knowledge Engineering, Hyatt Regency, Vancouver,
BC, Canada, July 1-3, 2013., pp. 586–591 (2014)

[22] Hartmann, T., Moawad, A., Fouquet, F., Nain, G., Klein, J., Traon, Y.L.:
Stream my models: Reactive peer-to-peer distributed models@run.time.
In: 18th ACM/IEEE International Conference on Model Driven Engi-
neering Languages and Systems, MoDELS 2015, Ottawa, ON, Canada,
September 30 - October 2, 2015, pp. 80–89 (2015). DOI 10.1109/
MODELS.2015.7338238. URL http://dx.doi.org/10.1109/MODELS.
2015.7338238

[23] Hartmann, T., Moawad, A., Fouquet, F., Reckinger, Y., Mouelhi, T.,
Klein, J., Le Traon, Y.: Suspicious electric consumption detection based
on multi-profiling using live machine learning. In: 2015 IEEE Interna-
tional Conference on Smart Grid Communications (SmartGridComm)
(2015)

[24] Henricksen, K., Indulska, J., Rakotonirainy, A.: Modeling context in-
formation in pervasive computing systems. In: Proceedings of the
First International Conference on Pervasive Computing, Pervasive ’02,
pp. 167–180. Springer-Verlag, London, UK, UK (2002). URL http:
//dl.acm.org/citation.cfm?id=646867.706693

[25] Herlocker, J.L., Konstan, J.A., Terveen, L.G., Riedl, J.T.: Evaluating
collaborative filtering recommender systems. ACM Trans. Inf. Syst.
22(1), 5–53 (2004). DOI 10.1145/963770.963772. URL http://doi.acm.
org/10.1145/963770.963772

[26] Hido, S., Tokui, S., Oda, S.: Jubatus: An open source platform for
distributed online machine learning. In: NIPS 2013 Workshop on Big
Learning, Lake Tahoe (2013)

[27] Hug, T., Lindner, M., Bruck, P.A.: Microlearning: Emerging concepts,
practices and technologies after e-learning. Proceedings of Microlearn-
ing 5 (2005)

[28] Kent, S.: Model driven engineering. In: Proceedings of the Third
International Conference on Integrated Formal Methods, IFM ’02, pp.
286–298. Springer-Verlag, London, UK, UK (2002). URL http://dl.acm.
org/citation.cfm?id=647983.743552

[29] Kohtes, R.: From Valence to Emotions: How Coarse Versus Fine-grained
Online Sentiment Can Predict Real-world Outcomes. Anchor Academic
Publishing (aap verlag) (2014)

[30] Lassila, O., Swick, R.R.: Resource Description Framework (RDF) Model
and Syntax Specification. W3c recommendation, W3C (1999)

[31] Low, Y., Bickson, D., Gonzalez, J., Guestrin, C., Kyrola, A., Hellerstein,
J.M.: Distributed graphlab: a framework for machine learning and data
mining in the cloud. Proceedings of the VLDB Endowment 5(8), 716–
727 (2012)

[32] Low, Y., Gonzalez, J.E., Kyrola, A., Bickson, D., Guestrin, C., Heller-
stein, J.M.: Graphlab: A new framework for parallel machine learning.
CoRR abs/1408.2041 (2014). URL http://arxiv.org/abs/1408.2041

[33] Meta object facility (MOF) 2.5 core specification (2015). Version 2.5

[34] Miorandi, D., Sicari, S., De Pellegrini, F., Chlamtac, I.: Internet of
things: Vision, applications and research challenges. Ad Hoc Networks
10(7), 1497–1516 (2012)

[35] Moawad, A.: Towards ambient intelligent applications using models@
run. time and machine learning for context-awareness. Ph.D. thesis,
University of Luxembourg (2016)

[36] Morin, B., Barais, O., Jezequel, J.M., Fleurey, F., Solberg, A.: Models@
run.time to support dynamic adaptation. Computer 42(10), 44–51
(2009). DOI 10.1109/MC.2009.327. URL http://dx.doi.org/10.1109/MC.
2009.327

[37] Norvig, P.: Artificial intelligence. NewScientist (27) (2012)
[38] Object Management Group: OMG Unified Modeling Language, Version

2.5. http://www.omg.org/spec/UML/2.5/PDF (2015)
[39] Ohmann, T., Herzberg, M., Fiss, S., Halbert, A., Palyart, M., Beschast-

nikh, I., Brun, Y.: Behavioral resource-aware model inference. In: Pro-
ceedings of the 29th ACM/IEEE international conference on Automated
software engineering, pp. 19–30. ACM (2014)

[40] Ottensooser, A., Fekete, A., Reijers, H.A., Mendling, J., Menictas,
C.: Making sense of business process descriptions: An experimental
comparison of graphical and textual notations. Journal of Systems and
Software 85(3), 596–606 (2012)

[41] Rothenberg, J.: Artificial intelligence, simulation & modeling. chap.
The Nature of Modeling, pp. 75–92. John Wiley & Sons, Inc., New York,
NY, USA (1989). URL http://dl.acm.org/citation.cfm?id=73119.73122

[42] Sun, J., Faloutsos, C., Papadimitriou, S., Yu, P.S.: Graphscope:
Parameter-free mining of large time-evolving graphs. In: Proceedings
of the 13th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’07, pp. 687–696. ACM, New
York, NY, USA (2007). DOI 10.1145/1281192.1281266. URL http:
//doi.acm.org/10.1145/1281192.1281266

[43] Sutcliffe, A., Sawyer, P.: Requirements elicitation: Towards the unknown
unknowns. In: Requirements Engineering Conference (RE), 2013 21st
IEEE International, pp. 92–104. IEEE (2013)

[44] Vierhauser, M., Rabiser, R., Grunbacher, P., Egyed, A.: Developing a
dsl-based approach for event-based monitoring of systems of systems:
Experiences and lessons learned (e). In: Automated Software Engi-
neering (ASE), 2015 30th IEEE/ACM International Conference on, pp.
715–725. IEEE (2015)

[45] W3C, W.W.W.C.: Owl 2 web ontology language. structural specification
and functional-style syntax (2009)

[46] Wernick, M.N., Yang, Y., Brankov, J.G., Yourganov, G., Strother, S.C.:
Machine learning in medical imaging. IEEE Signal Processing Magazine
27(4), 25–38 (2010). DOI 10.1109/MSP.2010.936730

[47] Yuan, N.J., Zheng, Y., Zhang, L., Xie, X.: T-finder: A recommender
system for finding passengers and vacant taxis. IEEE Transactions on
Knowledge and Data Engineering 25(10), 2390–2403 (2013)

[48] Zhang, B., Zhang, L.: Multi-granular representation-the key to machine
intelligence. In: Intelligent System and Knowledge Engineering, 2008.
ISKE 2008. 3rd International Conference on, vol. 1, pp. 7–7 (2008).
DOI 10.1109/ISKE.2008.4730887

[49] Zhang, B., Zhang, L.: Multi-granular representation-the key to machine
intelligence. In: Intelligent System and Knowledge Engineering, 2008.
ISKE 2008. 3rd International Conference on, vol. 1, pp. 7–7. IEEE
(2008)

[50] Zhu, H., Shan, L., Bayley, I., Amphlett, R.: Formal descriptive semantics
of uml and its applications. UML 2 Semantics and Applications p. 95
(2009)

