41 research outputs found

    Regression based polynomial chaos expansion for crop phenology estimation coupled with polsar imagery

    Get PDF
    Crop phenology monitoring using Synthetic Aperture Radar(SAR) data is gaining popularity within the remote sensing community due to SAR’s all weather and large coverage imaging capability. This paper introduces a polynomial chaos expansion (PCE) based regression algorithm to retrieve BBCH scale of crops, which identifies the phenology of crops in a standardized system. The impact and applicability of the proposed methodology is successfully illustrated using the TerraSAR-X dual-pol imagery that was acquired over the cultivation period of paddy-rice fields located in Turkey. To assess the applicability of the methodology, root mean square and correlation analysis were performed under different amount of training data and number of inputs

    Genome-Wide Transcriptional Reorganization Associated with Senescence-to-Immortality Switch during Human Hepatocellular Carcinogenesis

    Get PDF
    Cataloged from PDF version of article.Senescence is a permanent proliferation arrest in response to cell stress such as DNA damage. It contributes strongly to tissue aging and serves as a major barrier against tumor development. Most tumor cells are believed to bypass the senescence barrier (become "immortal") by inactivating growth control genes such as TP53 and CDKN2A. They also reactivate telomerase reverse transcriptase. Senescence-to-immortality transition is accompanied by major phenotypic and biochemical changes mediated by genome-wide transcriptional modifications. This appears to happen during hepatocellular carcinoma (HCC) development in patients with liver cirrhosis, however, the accompanying transcriptional changes are virtually unknown. We investigated genome-wide transcriptional changes related to the senescence-to-immortality switch during hepatocellular carcinogenesis. Initially, we performed transcriptome analysis of senescent and immortal clones of Huh7 HCC cell line, and identified genes with significant differential expression to establish a senescence-related gene list. Through the analysis of senescence-related gene expression in different liver tissues we showed that cirrhosis and HCC display expression patterns compatible with senescent and immortal phenotypes, respectively; dysplasia being a transitional state. Gene set enrichment analysis revealed that cirrhosis/senescence-associated genes were preferentially expressed in non-tumor tissues, less malignant tumors, and differentiated or senescent cells. In contrast, HCC/immortality genes were up-regulated in tumor tissues, or more malignant tumors and progenitor cells. In HCC tumors and immortal cells genes involved in DNA repair, cell cycle, telomere extension and branched chain amino acid metabolism were up-regulated, whereas genes involved in cell signaling, as well as in drug, lipid, retinoid and glycolytic metabolism were down-regulated. Based on these distinctive gene expression features we developed a 15-gene hepatocellular immortality signature test that discriminated HCC from cirrhosis with high accuracy. Our findings demonstrate that senescence bypass plays a central role in hepatocellular carcinogenesis engendering systematic changes in the transcription of genes regulating DNA repair, proliferation, differentiation and metabolism

    The Ability to Generate Senescent Progeny as a Mechanism Underlying Breast Cancer Cell Heterogeneity

    Get PDF
    Background Breast cancer is a remarkably heterogeneous disease. Luminal, basal-like, "normal-like", and ERBB2+ subgroups were identified and were shown to have different prognoses. The mechanisms underlying this heterogeneity are poorly understood. In our study, we explored the role of cellular differentiation and senescence as a potential cause of heterogeneity. Methodology/Principal Findings A panel of breast cancer cell lines, isogenic clones, and breast tumors were used. Based on their ability to generate senescent progeny under low-density clonogenic conditions, we classified breast cancer cell lines as senescent cell progenitor (SCP) and immortal cell progenitor (ICP) subtypes. All SCP cell lines expressed estrogen receptor (ER). Loss of ER expression combined with the accumulation of p21Cip1 correlated with senescence in these cell lines. p21Cip1 knockdown, estrogen-mediated ER activation or ectopic ER overexpression protected cells against senescence. In contrast, tamoxifen triggered a robust senescence response. As ER expression has been linked to luminal differentiation, we compared the differentiation status of SCP and ICP cell lines using stem/progenitor, luminal, and myoepithelial markers. The SCP cells produced CD24+ or ER+ luminal-like and ASMA+ myoepithelial-like progeny, in addition to CD44+ stem/progenitor-like cells. In contrast, ICP cell lines acted as differentiation-defective stem/progenitor cells. Some ICP cell lines generated only CD44+/CD24-/ER-/ASMA- progenitor/stem-like cells, and others also produced CD24+/ER- luminal-like, but not ASMA+ myoepithelial-like cells. Furthermore, gene expression profiles clustered SCP cell lines with luminal A and "normal-like" tumors, and ICP cell lines with luminal B and basal-like tumors. The ICP cells displayed higher tumorigenicity in immunodeficient mice. Conclusions/Significance Luminal A and "normal-like" breast cancer cell lines were able to generate luminal-like and myoepithelial-like progeny undergoing senescence arrest. In contrast, luminal B/basal-like cell lines acted as stem/progenitor cells with defective differentiation capacities. Our findings suggest that the malignancy of breast tumors is directly correlated with stem/progenitor phenotypes and poor differentiation potential. © 2010 Mumcuoglu et al

    Promoter methylation of Wnt5a is associated with microsatellite instability and BRAF V600E mutation in two large populations of colorectal cancer patients

    Get PDF
    BACKGROUND: In colorectal cancer (CRC), tumour microsatellite instability (MSI) status and CpG island methylator phenotype (CIMP) status are indicators of patient outcome, but the molecular events that give rise to these outcomes remain largely unknown. Wnt5a is a critical regulator of non-canonical Wnt activity and promoter hypermethylation of this gene has emerging prognostic roles in CRC; however the frequency and prognostic significance of this epigenetic event have not been explored in the context of colorectal tumour subtype. Consequently, we investigated the frequency and prognostic significance of Wnt5a methylation in a large cohort of MSI-stratified CRCs. METHODS: Methylation was quantified in a large cohort of 1232 colorectal carcinomas from two clinically distinct populations from Canada. Associations were examined between methylation status and clinicopathlogical features, including tumour MSI status, BRAF V600E mutation, and patient survival. RESULTS: In Ontario, Wnt5a methylation was strongly associated with MSI tumours after adjustment for age, sex, and tumour location (odds ratio (OR)=4.2, 95% confidence interval (CI)=2.4-7.4, P<10(-6)) and with BRAF V600E mutation, a marker of CIMP (OR=12.3, 95% CI=6.9-21.7, P<10(-17)), but was not associated with patient survival. Concordant results were obtained in Newfoundland. CONCLUSION: Methylation of Wnt5a is associated with distinct tumour subtypes, strengthening the evidence of an epigenetic-mediated Wnt bias in CRC

    Genome-Wide Transcriptional Reorganization Associated with Senescence-to-Immortality Switch during Human Hepatocellular Carcinogenesis

    No full text
    Senescence is a permanent proliferation arrest in response to cell stress such as DNA damage. It contributes strongly to tissue aging and serves as a major barrier against tumor development. Most tumor cells are believed to bypass the senescence barrier (become "immortal") by inactivating growth control genes such as TP53 and CDKN2A. They also reactivate telomerase reverse transcriptase. Senescence-to-immortality transition is accompanied by major phenotypic and biochemical changes mediated by genome-wide transcriptional modifications. This appears to happen during hepatocellular carcinoma (HCC) development in patients with liver cirrhosis, however, the accompanying transcriptional changes are virtually unknown. We investigated genome-wide transcriptional changes related to the senescence-to-immortality switch during hepatocellular carcinogenesis. Initially, we performed transcriptome analysis of senescent and immortal clones of Huh7 HCC cell line, and identified genes with significant differential expression to establish a senescence-related gene list. Through the analysis of senescence-related gene expression in different liver tissues we showed that cirrhosis and HCC display expression patterns compatible with senescent and immortal phenotypes, respectively; dysplasia being a transitional state. Gene set enrichment analysis revealed that cirrhosis/senescence-associated genes were preferentially expressed in non-tumor tissues, less malignant tumors, and differentiated or senescent cells. In contrast, HCC/immortality genes were up-regulated in tumor tissues, or more malignant tumors and progenitor cells. In HCC tumors and immortal cells genes involved in DNA repair, cell cycle, telomere extension and branched chain amino acid metabolism were up-regulated, whereas genes involved in cell signaling, as well as in drug, lipid, retinoid and glycolytic metabolism were down-regulated. Based on these distinctive gene expression features we developed a 15-gene hepatocellular immortality signature test that discriminated HCC from cirrhosis with high accuracy. Our findings demonstrate that senescence bypass plays a central role in hepatocellular carcinogenesis engendering systematic changes in the transcription of genes regulating DNA repair, proliferation, differentiation and metabolism. © 2013 Yildiz et al

    Probabilistic benefit-cost analysis for earthquake damage mitigation: Evaluating measures for apartment houses in Turkey

    Get PDF
    In the wake of the 1999 earthquake destruction in Turkey, the urgent need has arisen to evaluate the benefits of loss mitigation measures that could be undertaken to strengthen the existing housing stock. In this study, a benefit-cost analysis methodology is introduced for the comparative evaluation of several seismic retrofitting measures applied to a representative apartment building located in Istanbul. The analysis is performed probabilistically through the development of fragility curves of the structure in its different retrofitted configurations. By incorporating the probabilistic seismic hazard for the region, expected direct losses can be estimated for arbitrary time horizons. By establishing realistic cost estimates of the retrofitting schemes and costs of direct losses, one can then estimate the net present value of the various retrofitting measures. The analysis in this work implies that, even when considering only direct losses, all of the retrofitting measures considered are desirable for all but the very shortest time horizons. This conclusion is valid for a wide range of estimates regarding costs of mitigation, discount rates, number of fatalities, and cost of human life. The general methodology developed here for a single building can be extended to an entire region by incorporating additional structural types, soil types, retrofitting measures, more precise space- and time-dependent seismic hazard estimates, etc. It is hoped that this work can serve as a benchmark for more realistic and systematic benefit-cost analyses for earthquake damage mitigation
    corecore