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ABSTRACT

Crop phenology monitoring using Synthetic Aperture Radar
(SAR) data is gaining popularity within the remote sensing
community due to SAR’s all weather and large coverage
imaging capability. This paper introduces a polynomial
chaos expansion (PCE) based regression algorithm to re-
trieve BBCH scale of crops, which identifies the phenology
of crops in a standardized system. The impact and applica-
bility of the proposed methodology is successfully illustrated
using the TerraSAR-X dual-pol imagery that was acquired
over the cultivation period of paddy-rice fields located in
Turkey. To assess the applicability of the methodology, root
mean square and correlation analysis were performed under
different amount of training data and number of inputs.

Index Terms— Polarimetry, SAR, precision agriculture,
monitoring, crop phenology, optimization, metamodels

1. INTRODUCTION

Polarimetric Synthetic Aperture Radar (PolSAR) satellite
measurements offer significant advantages for precision agri-
culture applications. With the capability of acquiring data
independently of solar illumination and cloud coverage, the
high sensibility of the radar signal to the geometrical and
physical properties of crops, and the richness of information
contained in the complex signal, PolSAR data provide a large
potential for several agricultural applications. In remote sens-
ing based precision agriculture application, the estimation
of growth stage of crops, such as BBCH stage, is of special
relevance for the continuous monitoring of fields. Recently,
a number of crop growth stage estimation techniques using
PolSAR measurements have been reported [1, 2, 3, 4].

In the recent studies, machine learning based regression
algorithms have become popular for phenological studies
compared to the Radiative Transfer Theory (RTT) based
modeling approaches. The ease of their implementation and
low computational cost make the machine learning regression
algorithms appealing for phenological monitoring. Learned
or data-driven statistical models do not deal with complex
models (e.g. backscattering model for a crop), instead they

are more flexible and they define the phenology estimation as
a regression problem, but they rely heavily on the available
training samples.

In this paper, we discuss the data-driven polynomial chaos
based (non-linear) regression for crop phenology estimation.
Polynomial Chaos Expansion (PCE), which relies on an as-
sessment of impact of inputs’ distribution on outputs’ distri-
bution, is well-known technique in uncertainty quantification
(UQ). In this context, sparse PCE was used for simplified the
complex backscattering function of paddy-rice [5, 6], and it
has received much more attention because of its low compu-
tational cost and ability to deal with complex problems. Our
work aims to expand the applicability of PCE as machine
learning regression method, which ignores the physics be-
hind the backscattering. Hence defining an approximate poly-
nomial function between BBCH scale (phenology of crops)
and the temporal polarimetric covariance matrix is the aim
of the regression based phenological stage estimation. The
efficiency of the data-driven PCE in terms of estimating phe-
nology of crops with uncertain parameters from dual-pol co-
variance matrix will be discussed.

2. METHODS AND MATERIALS

2.1. Problem Statement

A sufficient static of dual-pol acquisition vector k = [HH VV]
T

is estimated by maximum-likelihood method C=⟨kk†
⟩ and

defined as multi-looked covariance matrix:

C = [
⟨∣HH ∣

2
⟩ ⟨HHV V †

⟩

⟨∣V V ∣
2
⟩

] (1)

where † and ⟨⟩ represent complex conjugate operator and spa-
tial averaging, respectively. In (1), diagonal terms are the
measurement of backscattering of crops in HH and VV po-
larization, where off-diagonal terms -which are symmetrical
under lexicographic formulation- give information about their
correlation and phase difference.
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Fig. 1: Evolution of the BBCH stage for a complete growth cycle
of paddy rice from 2015 ground campaign (May-October) given to-
gether with TerraSAR-X acquisition and ground measurement dates.

2.2. Least squares polynomial chaos regression

The polynomial chaos expansion metamodel learns the uncer-
tainty of the output of nonlinear system (Y ) from the uncer-
tainty of the input parameters (X) using an approximation of
a real model with a multidimensional polynomial expansion.
In PCE, multidimensional orthogonal polynomials approxi-
mate the Y as in (2):

Y = f(X) ≅

D

∑

j=0
ajΨj(ξ) (2)

where X ∈ RM is the random vector including the covari-
ance matrix elements expressing BBCH scale Y , aj ∈ R,
Ψj(ξ) ∈ R and D are the coefficients, orthonormal basis and
degree of the polynomial series with respect to the distribu-
tion of X [7, 8]. Once all the coefficients are determined,
the BBCH scale of the rice fields can be calculated with its
variance from PolSAR image. Additionally, the coefficients
can be interpretable compared to the other machine learning
techniques.

There are different ways of calculating the coefficients
in (2). In this paper, we consider the non-intrusive (regres-
sion) method to compute the coefficients of the generated
PCE meta-model. If X is a set of N covariance matrix el-
ements (inputs), the main interest is to find the coefficients
minimize the sum of quadratic errors as:

arg min
a

N

∑

i=1
(f (x(i)) − aT Ψ(x(i)))

2
(3)

which aims to decrease the differences between the known
and the predicted output values. The size and the variance
of the training set determine the accuracy of the resulting
polynomial model. Polynomial basis and coefficients are
constructed using a least-square sense to directly evaluate
the covariance matrix elements response to BBCH scale in
MATLAB® within the UQLab framework by [9, 10].

Fig. 2: The performance analysis of the PCE metamodel testings
for the BBCH parameter for different sample sizes. The plots are
prepared using the quantile information of 200 simulations for coef-
ficient of determination and root mean square error.

2.3. Experimental Setup

The selected test area, Ipsala, is one of the biggest rice cultiva-
tion sites in Turkey with an approximate acreage of ∼190 km2.
As shown in Fig.1, field campaigns were conducted almost si-
multaneously with the SAR acquisitions to have a representa-
tive rice phenology information. For the analysis, the noise in
the TerraSAR-X data was reduced using 13 × 13 boxcar aver-
aging windows. Each pixel within the fields is considered as
a separate sample for regression analysis and is labeled with
a single BBCH value. Thus, the measured BBCH value of
the field is defined by a distribution of covariance matrix ele-
ments. A total of 5 paddy-rice fields provides a total number
of 30000 samples. The results are reported with their coef-
ficient of determination (R2) and the root-mean-square error
(RMSE) values.

3. RESULTS AND DISCUSSION

Here, we present the PCE based regression results for the
BBCH-scale estimation from TerraSAR-X images. The dual-
pol covariance matrix elements in (1) and BBCH-scale mea-
surements are used as input (X) and output dataset (Y ) in
(2), respectively. Two groups of experiments are designed to
evaluate the effectiveness of the proposed method. Firstly, the
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effect of number of samples is studied, then the PCE is im-
plemented to dataset with setting training sample size fixed.
Since the performance of the regression is strongly dependent
on the training dataset, 200 experiments (for each plot) are
conducted with different training and test dataset.

As the first study, PCE metamodel was implemented sev-
eral times by taking different sized training sets ranging from
100 to 15000 with 100 sample increments. The outcomes
of the final PCE metemodels in their estimation capability of
BBCH scale are given in Fig.2. The dark blue line shows the
mean value of the simulation results. Besides, light blue con-
tinuous lines represents the 25% quartile from the training
dataset with different samples. The analysis shows that the
PCE metamodel training converges to a stable state around
5000 samples, which results in an R2 of 0.985 and RMSE of
3.6 BBCH unit. Therefore, we have fixed the training sample
size to 5000 for the next steps of the analysis.

After performing the regression analysis with different
training size, 16.6% of the data (5000 samples) is randomly
chosen as a training dataset, and the rest (25000 samples) as
a test dataset. The maximum polynomial degree was set to
20 for the PCE training. As presented in Fig.3(b), the BBCH
scale is estimated successfully (R2

≥ 0.97) with the polyno-
mial function constructed from the training dataset. Uncer-
tainty of BBCH scale varies in time due to the heterogeneity
of the input dataset. The performance of the PCE metamodel
is better for rice canopies having BBCH scale less than 30
and more than 80. The higher uncertainty in the reproduc-
tive stage (30 < BBCH scale < 70) can be related to the vari-
ance of the input variables related to the presence of plants
with varying morphological structure within the fields. The
RMSE values for training and testing were calculated to be
less than 5 BBCH unit, which are acceptable for phenology
estimation. Fig.4 shows the BBCH scale map for a selected
paddy-rice field, which was estimated with PCE metamodel
constructed with the training dataset having 5000 samples.
Inspecting these temporal maps, one could check the growing
trend on a field-by-field basis in the pixel-level and observe
the different stages within fields.

To put in a nutshell, this paper proposes an least square
polynomial chaos based regression for phenology estimation
of crops. The proposed approach takes the advantage of low
computational cost and reliability. However, several issues
that need to be further addressed in the future studies. First,
Sobol indices can be calculated analytically from the polyno-
mial coefficients. Regarding this, the proposed approach can
be used for dimensionality reduction, which can improve the
regression performance in terms of computational cost and
accuracy [11]. Another aspect to be investigated is related
to the application of the PCE. Previously, [12] has also imple-
mented the PCE approach for phenology monitoring, but with
the training dataset including the combination of ground mea-
surements and simulated data generated by a electromagnetic
scattering model. The proposed regression based (statistical)

Fig. 3: PCE accuracy analysis for BBCH estimation from rice fields
with a total number of n=30000 samples.

method should be compared with the this hybrid (statistical
and physical) method in the context of computational cost,
accuracy and stability.
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