38 research outputs found

    Lamellar mesophase nucleated by Josephson vortices at the melting of the vortex lattice in Bi2Sr2CaCu2O8+deltaBi_2Sr_2CaCu_2O_{8+delta}

    Full text link
    The local effect of the Josephson vortices on the vortex lattice melting process in \BSCCO crystals in the presence of an in-plane field HabH_{ab} is studied by differential magneto-optical imaging. The melting process is found to commence along the Josephson vortex stacks, forming a mesomorphic phase of periodic liquid and solid lamellas, the direction and spacing of which are controlled by HabH_{ab}. The reduction of the local melting field HmH_m along the Josephson vortex stacks is more than an order of magnitude larger than the reduction of the average bulk HmH_m by HabH_{ab}.Comment: 5 pages, 3 figures (low res). Higher resolution can be found in the Phys. Rev. Lett. equivalent pape

    Electrically tunable multi-terminal SQUID-on-tip

    Full text link
    We present a new nanoscale superconducting quantum interference device (SQUID) whose interference pattern can be shifted electrically in-situ. The device consists of a nanoscale four-terminal/four-junction SQUID fabricated at the apex of a sharp pipette using a self-aligned three-step deposition of Pb. In contrast to conventional two-terminal/two-junction SQUIDs that display optimal sensitivity when flux biased to about a quarter of the flux quantum, the additional terminals and junctions allow optimal sensitivity at arbitrary applied flux, thus eliminating the magnetic field "blind spots". We demonstrate spin sensitivity of 5 to 8 μB/Hz1/2\mu_B/\text{Hz}^{1/2} over a continuous field range of 0 to 0.5 T, with promising applications for nanoscale scanning magnetic imaging

    Nanoscale imaging of equilibrium quantum Hall edge currents and of the magnetic monopole response in graphene

    Full text link
    The recently predicted topological magnetoelectric effect and the response to an electric charge that mimics an induced mirror magnetic monopole are fundamental attributes of topological states of matter with broken time reversal symmetry. Using a SQUID-on-tip, acting simultaneously as a tunable scanning electric charge and as ultrasensitive nanoscale magnetometer, we induce and directly image the microscopic currents generating the magnetic monopole response in a graphene quantum Hall electron system. We find a rich and complex nonlinear behavior governed by coexistence of topological and nontopological equilibrium currents that is not captured by the monopole models. Furthermore, by utilizing a tuning fork that induces nanoscale vibrations of the SQUID-on-tip, we directly image the equilibrium currents of individual quantum Hall edge states for the first time. We reveal that the edge states that are commonly assumed to carry only a chiral downstream current, in fact carry a pair of counterpropagating currents, in which the topological downstream current in the incompressible region is always counterbalanced by heretofore unobserved nontopological upstream current flowing in the adjacent compressible region. The intricate patterns of the counterpropagating equilibrium-state orbital currents provide new insights into the microscopic origins of the topological and nontopological charge and energy flow in quantum Hall systems

    Imaging resonant dissipation from individual atomic defects in graphene

    Full text link
    Conversion of electric current into heat involves microscopic processes that operate on nanometer length-scales and release minute amounts of power. While central to our understanding of the electrical properties of materials, individual mediators of energy dissipation have so far eluded direct observation. Using scanning nano-thermometry with sub-micro K sensitivity we visualize and control phonon emission from individual atomic defects in graphene. The inferred electron-phonon 'cooling power spectrum' exhibits sharp peaks when the Fermi level comes into resonance with electronic quasi-bound states at such defects, a hitherto uncharted process. Rare in the bulk but abundant at graphene's edges, switchable atomic-scale phonon emitters define the dominant dissipation mechanism. Our work offers new insights for addressing key materials challenges in modern electronics and engineering dissipation at the nanoscale

    Inverse melting of the vortex lattice

    Full text link
    Inverse melting, in which a crystal reversibly transforms into a liquid or amorphous phase upon decreasing the temperature, is considered to be very rare in nature. The search for such an unusual equilibrium phenomenon is often hampered by the formation of nonequilibrium states which conceal the thermodynamic phase transition, or by intermediate phases, as was recently shown in a polymeric system. Here we report a first-order inverse melting of the magnetic flux line lattice in Bi2Sr2CaCu2O8 superconductor. At low temperatures, the material disorder causes significant pinning of the vortices, which prevents observation of their equilibrium properties. Using a newly introduced 'vortex dithering' technique we were able to equilibrate the vortex lattice. As a result, direct thermodynamic evidence of inverse melting transition is found, at which a disordered vortex phase transforms into an ordered lattice with increasing temperature. Paradoxically, the structurally ordered lattice has larger entropy than the disordered phase. This finding shows that the destruction of the ordered vortex lattice occurs along a unified first-order transition line that gradually changes its character from thermally-induced melting at high temperatures to a disorder-induced transition at low temperatures.Comment: 13 pages, 4 figures, Nature, In pres
    corecore