Conversion of electric current into heat involves microscopic processes that
operate on nanometer length-scales and release minute amounts of power. While
central to our understanding of the electrical properties of materials,
individual mediators of energy dissipation have so far eluded direct
observation. Using scanning nano-thermometry with sub-micro K sensitivity we
visualize and control phonon emission from individual atomic defects in
graphene. The inferred electron-phonon 'cooling power spectrum' exhibits sharp
peaks when the Fermi level comes into resonance with electronic quasi-bound
states at such defects, a hitherto uncharted process. Rare in the bulk but
abundant at graphene's edges, switchable atomic-scale phonon emitters define
the dominant dissipation mechanism. Our work offers new insights for addressing
key materials challenges in modern electronics and engineering dissipation at
the nanoscale