151 research outputs found
GPU computing for accelerating the numerical Path Integration approach
The paper discusses a novel approach of accelerating the numerical Path Integration method, used for generating a stationary joint response probability density function of a dynamic system subjected to a random excitation, by the GPU computing. The paper proposes the parallelization of nested loops technique and demonstrates the advantages of GPU computing. Two, three and four dimensional in space problems are investigated as a part of the pilot project and the achieved maximum accelerations are reported. Three degree-of-freedom system (6D) is approached by the Path Integration technique for the first time. The application of the proposed GPU methodology for problems of stochastic dynamics and reliability are discussed
Qualitative changes in bifurcation structure for soft vs hard impact models of a vibro-impact energy harvester
Funding Information: The authors gratefully acknowledge partial funding for this work from NSF-CMMI (No. 2009270) and EPSRC (No. EP/V034391/1).Peer reviewedPublisher PD
Dielectric Elastomers for Energy Harvesting
Dielectric elastomers are a type of electroactive polymers that can be conveniently used as sensors, actuators or energy harvesters and the latter is the focus of this review. The relatively high number of publications devoted to dielectric elastomers in recent years is a direct reflection of their diversity, applicability as well as nontrivial electrical and mechanical properties. This chapter provides a review of fundamental mechanical and electrical properties of dielectric elastomers and up-to-date information regarding new developments of this technology and it’s potential applications for energy harvesting from various vibration sources explored over the past decade
Important considerations in optimising the structural aspect of a SDOF electromagnetic vibration energy harvester
This study investigates several important considerations to be made when optimising the structural aspects of a single-degree-of-freedom (SDOF) electromagnetic vibration energy harvester. Using the critically damped stress method, the damping and power output of the harvester were modelled and verified, displaying an excellent agreement with the experimental results. The SDOF harvester was structurally optimised under a certain set of constraints and it was found that under the fixed beam’s thickness condition, the harvester displayed an insignificant increase in power output as a function of volume when the device’s size was relatively larger. This highlights the importance of considering a smaller practical volume for this case. Additionally, when optimising the device using a low stress constraint and a low damping material, it was observed that considering the load resistance as an input parameter to the objective function would lead to a higher power output compared to the optimum load resistance condition. Further analysis indicated that there exists a power limit when the electromagnetic coupling coefficient approaches infinity. For the case of a high electromagnetic coupling coefficient value and a small volume constraint, it is possible to achieve approximately 80.0% of the harvester’s power limit. Finally, it was demonstrated that a high power output can be achieved for a SDOF electromagnetic harvester by considering a high-density proof mass centred at the free end of the beam
Updatable Probabilistic Evaluation of Failure Rates of Mechanical Components in Power Take-Off Systems of Tidal Stream Turbines
This paper presents a method for the probabilistic evaluation of the failure rates of mechanical components in a typical power take-off (PTO) system of a horizontal-axis tidal stream turbine (HATT). The method is based on a modification of the method of the influence factors, when base failure rates, relevant influence factors and, subsequently, resulting failure rates are treated as random variables. The prior (i.e., initial) probabilistic distribution of the failure rates of a HATT component is generated using data for similar components from other industries, while taking into account actual characteristics of the component and site-specific operating and environmental conditions of the HATT. A posterior distribution of the failure rate is estimated numerically based on a Bayesian approach as new information about the component performance in an operating HATT becomes available. The posterior distribution is then employed to obtain the updated mean and lower and upper confidence limits of the failure rate. The proposed method is illustrated by applying it to the evaluation of the failure rates of two key components of the PTO system of a typical HATT—main seal and main bearing. In particular, it is shown that uncertainty associated with the method itself has a major influence on the failure rate evaluation. The proposed method is useful for the reliability assessment of both PTO designs of new HATTs and PTO systems of operating HATTs
- …