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ABSTRACT

Vibro-impact phenomena in engineering systems, considered an adverse effect in some settings, are an intrinsic part of the mechanism
in others. In energy harvesting, a vibro-impact component is often intentionally introduced to increase the power output or the system’s
bandwidth. The impacts can be treated as “hard” for instantaneous impacts or “soft” for compliant materials. Since both types of models
exhibit complex dynamics, a comparison is non-trivial. We develop a soft impact model for a vibro-impact energy harvester, calibrating
it with the relevant hard impact model for large stiffness, and systematically compare the different phenomena and dynamics in various
compliant regimes. Numerical results are used in two different parametric analyses, considering the bifurcation diagrams in terms of device
size and external forcing parameters. Varying the natural frequency of the membranes that form the impact boundaries, we observe shifts
in the bifurcation structure that promote period-1 orbits for increased softness parameters, often generating higher power output, but also
introducing parameter sensitivities for increased softness. Complementary analytical results reveal unstable periodic orbits and co-existing
behaviors, potentially missed by computational methods, that can influence the bifurcation structure and in turn the energy output. A non-
dimensional formulation highlights the significance of ratios of external and natural frequencies in delineating soft and hard impact scenarios
parametrically. The soft impact model exhibits new symmetry breaking bifurcations related to key quantities that characterize the soft impact
dynamics, such as the effective restitution coefficients, the impact phase, and the contact time interval, not captured by hard impact models.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0101050

Impacts are present in a variety of physical systems and are known
to introduce nonlinearities that can drastically change the system
response. Predicting the influence of impacts requires a careful
approach that can handle significant complexity since there are
different types of physical phenomena depending on the stiffness,
geometry, and relative velocity of the impacting bodies. Despite
the prevalence of impacts in several applications and mecha-
nisms, few studies compare different models or study their lim-
itations. Even the comparison between simple compliant (soft)
and non-compliant (hard) models is not straightforward due to

the complex dynamics presented by them. Thus, we develop a
soft impact model for a vibro-impact energy harvester, calibrat-
ing it with the relevant hard impact model for large stiffness, and
systematically compare the different phenomena and dynamics
in various compliant regimes. A non-dimensional formulation
highlights the significance of ratios of external and natural fre-
quencies in delineating soft and hard impact models paramet-
rically. The soft impact model exhibits new symmetry breaking
bifurcations related to key quantities that characterize the soft
impact dynamics, such as the effective restitution coefficients,
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the impact phase, and the contact time interval, which cannot
be represented by hard impact models. We observed shifts in the
bifurcation structure that promote period-1 orbits for increased
softness parameters, often generating higher power output, but
also introducing parameter sensitivities for increased softness,
which can dictate optimum values for energy harvesting appli-
cations. Furthermore, we develop analytical results that comple-
ment computational methods and reveal unstable periodic orbits
and co-existing behaviors that can influence the bifurcation struc-
ture and energy output. Overall, we manage to provide signif-
icant advances in the design of vibro-impact energy harvesters
and the different phenomena modeled by hard and soft impact
formulations.

I. INTRODUCTION

Impacts are present in a variety of physical systems and are
known to introduce nonlinearities that can drastically change the
system response. Predicting the influence of impacts requires a care-
ful approach that can handle significant complexity since there are
different types of physical phenomena depending on the stiffness,
geometry, and relative velocity of the impacting bodies. Despite the
prevalence of impacts in some applications and mechanisms, such
as gears, hammer drills, jack hammers, and others, few studies com-
pare different models or study their limitations, while most rigorous
explorations have focused primarily on the behavior of specific
mechanisms such as rigid or elastic impacts, or specific geometries.
For example, even though models of impacts have been studied for
decades, very few reports compare soft and hard model predictions
for the same impacting system, as in Refs. 1–3.

In mechanical systems, the appearance of impacts may be due
to tolerances, specific design, or aging, just to name a few. The
dynamics driven by impacts is typically undesirable in some appli-
cations such as machining where the introduction of nonlinearities
can lead to chattering,4 or in rotors where impacts increase wear,
leading to increased maintenance5 and sometimes causing system
failure.6 In other settings, impacts can be a design feature such as in
seismic mitigation where gaps are introduced to uncouple the struc-
ture from its surroundings,7 or in energy harvesters where impacts
are a source of nonlinearities that can expand the operational band-
width. Optimizing performance in any of these settings requires a
thorough understanding of the resulting nonlinear response.8,9

Some of the first studies of impact phenomena in mechanical
engineering were performed by Shaw et al.10–12 where the authors
use an impact oscillator system composed of a mass attached to a
spring and dash-pot and an impact beam placed at a certain dis-
tance from the mass. In these early studies, impacts are considered
non-complaint (hard impacts), where impacts are instantaneous
and the relationship between the velocities of the impacting objects
is captured via a restitution coefficient.13 These models can explain
several behavioral patterns of an impacting system like chattering,15

grazing,13 and other nonlinear phenomena.16 However, since they do
not describe compliant barriers (soft impacts), several subsequent
works were focused on modeling the contact forces as a continuum
over a time interval as summarized by Gilard and Sharf.14

Following these initial studies, several authors explored analyt-
ical solutions of vibroimpact systems, including analysis of grazing
phenomena as in Ref. 17. Others considered grazing numerically as
in Ref. 18 reporting hard and soft grazing bifurcations and devel-
oping a numerical method to evaluate grazing points.19 Grazing
was also investigated in the soft impact setting, using both mod-
els and experiments for impact oscillators.20–23 Others have studied
the influence of impacts in stochastic systems,24 in the effective-
ness of control in impacting systems,25,26 and within the context of
nonlinear bumpers.27

Recently, a number of studies have analyzed the differences
between soft and hard impact models and the relevant limitations
of these models. Rebouças et al.28 calibrated a hard impact model
with experimental results, using a relatively large stiffness in order
to mimic the hard impact model. They verified that even in this set-
ting, the experimental restitution coefficient was dependent on the
impact velocity and on the excitation phase at impact. Blazejczyk-
Okolewska et al.29 calibrated the energy dissipation in a soft impact
model by utilizing the restitution coefficient of a hard impact model
in a single sided impact oscillator. Their results showed that the soft
model reproduces the behavior of the hard model for a range of
restitution coefficients. Later, Okolewski et al.1,2 extended the cali-
bration to all values of restitution coefficients, providing their results
in bifurcation diagrams in terms of excitation frequency. However,
they did not pursue interpreting the different behaviors and the
physical phenomena underlying the bifurcation structure. Chehaibi
et al.30 made a brief comparison on the energy dissipation of linear
and nonlinear boundary models but did not include hard impacts.

The use of soft or hard impact models can greatly affect the
analysis and design in applied settings. For example, impacts have
been introduced in the design of several energy harvesters as a
source of nonlinearities to improve the device’s performance. Drezet
et al.31 compare different designs for an energy harvester includ-
ing hard stops in the system. Likewise, Halim and Park8 introduce
impacts in their energy harvester design, thus broadening the fre-
quency band for efficient operation. Several designs use impacts and
contact in conjunction with different harvesting methods, such as
in triboelectric devices,32 magnet induction harvesters,33 and piezo-
electric based34,35 or electrostatic harvesters.9 These designs can be
developed for a wide range of energy sources such as ocean waves,
structural vibrations, human locomotion, etc. In energy harvesting
of structural vibrations, a series of studies by Serdukova et al.36,37

employs maps to investigate a two-sided vibro-impact energy har-
vester (VI-EH). In addition to the analysis, they compare analytical
and numerical results describing motions composed of impacts on
alternating ends of the harvester, as well as grazing incidences that
lead to transitions between different types of impact sequences. They
also perform a parametric study that indicates design considera-
tions for optimizing the harvester’s power output. These studies
are based on the hard impact model with a constant restitution
coefficient, leaving many open questions about the correspond-
ing soft impact model for this system that can translate to real
applications.28

The goal of this study is to develop a soft impact model for the
vibro-impact energy harvesting pair previously described in Ref. 36
and to systematically compare its dynamics with that of the cor-
responding hard impact model. In the model, a ball moves freely
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within an externally excited cylindrical capsule, between impacts
with dielectric polymer membranes on either end. Energy is gen-
erated as the ball impacts and deforms the membranes, and, thus,
an accurate model for these impacts is critical. The comparison
between hard and soft impact models is achieved primarily through
numerical simulation and maps of the dynamics between impacts. In
contrast to Refs. 36–38, the hard impact model is used as a starting
point for calibration of the soft impact model with a large stiff-
ness parameter. Then, appropriate parameters are varied in order
to compare the differences and similarities of the hard and soft
impact models when varying the stiffness of the impact boundary.
We also discuss the physical phenomena behind the observed dif-
ferences, demonstrating how this understanding guides the system
design for optimal energy output. Our study has several differences
as compared with Refs. 1 and 2; we study a model based on the two-
sided impact pair, and we capture the variation in dynamics and
bifurcations in terms of several different parameters: device length,
stiffness of the impact boundary, and excitation frequency. Through
appropriate non-dimensionalizations, we obtain an insight into a
number of unexpected results; for example, even with stiff bound-
aries in both the soft and hard impact models, they can disagree if
the excitation frequency is sufficiently high. We also identify sce-
narios where a softer membrane leads to a sharp increase in energy
output, with increased parameter sensitivity near the optimal out-
put. Furthermore, the effective restitution coefficients exhibited by
the soft model are dependent on the excitation phase at impact and
may undergo symmetry breaking bifurcations that produce asym-
metric motions with novel dynamical properties, not observed in the
hard impact case. We explore these and other differences within the
particular context of VI-EH, given the range of applications recently

reported,39 and with a particular interest in energy harvesting from
mechanical and civil structures.

This work is organized as follows. In Sec. II, we describe the
vibro-impact pair system and give the equations of motion for the
corresponding hard and soft impact models. We derive the (semi)-
analytical solutions for both models using an approach that maps
the dynamics between consecutive impacts. This leads naturally to
a technique for calibrating the soft impact model with the hard
impact model. In addition, we give the electric model, describing
the extraction of the power generated by each impact and defining
an appropriate power output metric for the device. In Sec. III, we
calibrate hard and soft impact models for large stiffness and per-
form two separate parametric analyses of the soft model response as
the stiffness varies. Also, we analyze the energy output of the sys-
tem in different circumstances, illustrating how these results can
guide device design for optimal energy output. Finally, we present
the conclusions of the work and future directions.

II. THE VIBRO-IMPACT MODEL

This study addresses the main differences between soft and
hard impact models in the context of a two-sided VI-EH. The mech-
anism is presented in Fig. 1(a), showing a rigid cylindrical capsule
with mass M (gray in the figure) and displacement Z. We consider an
harmonic excitation Fext of the frame as we consider that vibrations
are filtered by an external structure where the harvester is attached.
A ball (black) with mass mb is free to move within the capsule along
its axis without friction, with displacement Y. On each end of the
capsule, two dielectric polymer membranes (yellow disks) are placed
in such a way that the ball can move a distance s from one membrane

FIG. 1. Schematics of the apparatus. (a) A three-dimensional drawing shows the capsule (gray) with membranes (yellow), and the ball (black). (b) Hard impact model
schematic. (c) Soft impact model schematic.
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to another without contact. The apparatus is also considered to be in
a constant gravitational field of acceleration g and at an angle β from
the horizontal one. Here, we focus on the case β = 0 and include
some observations about the β 6= 0 in Sec. III.

The equations of motion when the ball is not in contact with
the membrane can be expressed as

Y′′ = − sin (β)g for | Y − Z | <
s

2
, (1)

MZ′′ = −A0 cos ωτ for | Y − Z | <
s

2
, (2)

where τ is the time, ω is the excitation frequency of the main struc-
ture, A0 is the amplitude of excitation in newtons, and ′ represents
the derivative with respect to time. Assuming that M � mb, the ball
dynamics do not affect the motion of the capsule, and the equations
of motion can be simplified by writing them in terms of relative
displacement X = Y − Z,

X′′ = −g sin(β) + A cos(ωτ), for | X | <
s

2
, A = A0

M
. (3)

The schematics for the hard and soft impact models are shown
in Figs. 1(b) and 1(c), respectively.

A. Modeling the hard impact dynamics

In the hard impact model, the membranes are non-compliant
and the impact is treated as instantaneous at the time τj of the jth
impact. Hence, the relationship between the instantaneous veloci-
ties immediately before [X′(τ−)] and after [X′(τ+)] the impact with
the membrane wall is defined by a coefficient of restitution r, which
together with Eq. (3) completes the hard impact model,

X′′ = −g sin(β) + A cos(ωτ) for | X | <
s

2
, (4)

X′(τ+) = −rX′(τ−) for | X | = s

2
. (5)

Since the system is linear between impacts, the solution can be
written explicitly, by integrating Eq. (4) with respect to time, using
the condition of Eq. (5), and the continuity of X across impacts. For
example, for τj < τ < τj+1, the motion is given by

X(τ ) = −g sin(β)(τ − τj)
2

2
− A

ω2
(cos(ωτ) − cos(φj))

− A

ω
sin(φj)(τ − τj) − rX′(τ−

j )(τ − τj) ± s

2
, (6)

X′(τ ) = −g(τ − τj) sin β + A

ω
sin (ωτ) − A

ω
sin (φj) − rX′(τ−

j ),

(7)

where φj = mod(ωτj, 2π) is the excitation phase at τj and +(−) s/2
corresponds to the last impact X(τj) located on the right (left) side.
Equations (5) and (7) are then used to determine X′(τ−

j+1) and τj+1.
Equations (6) and (7) with τ = τj+1 provide the definition

of a map of the dynamics between two consecutive impacts. This
representation has the advantage of explicitly stating the system

FIG. 2. Schematic for the maps defining the impact models via a sequence of
piecewise linear equations. Maps M1 to M4 are used by both models while M5

and M6 are used exclusively in the soft impact model.

dynamics in closed form for each map, allowing analyses beyond
purely numerical integration methods as shown in Refs. 37 and 40.
Then, the different types of dynamics in the hard impact model
can be expressed via combinations of four different maps, Mi,
i ∈ (1, 2, 3, 4), as shown in Fig. 2, used to construct the dynamics
of the hard model. The maps M1 and M2 correspond to cases where
the consecutive impacts are on different ends of the capsule, with M1

from left to right and M2 from right to left. Analogously, M3 and M4

correspond to the evolution between two impacts on the same end
of the capsule, on the left for M3 and on the right for M4. The initial
and terminal conditions for the map Mi between two impacts at τj

and τj+1 are given by

X(τj) =
{

−s/2 for Mi, i = 1, 3,

s/2 for Mi, i = 2, 4,
and

(8)

X(τj+1) =
{

s/2 for Mi, i = 1, 4,

−s/2 for Mi, i = 2, 3.

Evaluating Eqs. (6) and (7) at τ = τj+1, the maps are in terms of
X′(τ−

j+1) X′(τ−
j ) only. Then, without loss of generality, we drop the

− superscript throughout the remainder of this manuscript. Given
the impact time τj, with corresponding displacement and velocity
X(τj) and X′(τj), respectively, the time of the next impact τj+1 for the
map Mi is determined from Eq. (6) subject to the initial and terminal
conditions of Eq. (8),

− g
1j

2

2
sin β − A

ω2
cos (ω1j + φj) − rX′(τj)1j −

A

ω
sin (φj)1j

= 3 − A

ω2
cos (φj), (9)

1j = τj+1 − τj, 3 =











−s for M1,

+s for M2,

0 for M3 and M4,

where 1j is the time interval between consecutive impacts. Since
Eq. (9) is a transcendental equation for τj+1, it has several solu-
tions and in general must be solved numerically. To ensure that the
solution is physically relevant, that is, corresponding to consecutive
impacts, we seek the smallest τj+1 > τj. After τj+1 is obtained, Eq. (7)
can be used to calculate X′(τj+1),

X′(τj+1) = −g1j sin β + A

ω
sin(ω1j + φj) − rX′(τj). (10)
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We highlight that, by using maps, one can calculate the system
orbit for a given initial condition, but this method cannot capture
sticking conditions as that would require an infinite sequence of
maps.

To distinguish between impacting orbits described by different
sequences of Mi, we use the notation n:m/pT to categorize periodic
orbits for the VI-EH device with T-periodic external excitation, as
in Ref. 37. Here, n (m) is the number of impacts on the left (right)
of the capsule per time interval pT, for p an integer. In the case
where p = 1, we simplify the notation to n:m. The notation captures
period doubling sequences, e.g., n:m/pT for p = 2, 4, . . . is a period
doubling sequence. Grazing bifurcations, where the trajectory has
a zero relative velocity at impact, yield other types of instabilities
and transitions;36,37 for example, in the VI-EH system, a grazing
incidence typically precedes a transition from a n:m (or n:m/pT)
periodic orbit to a (n + 1):m orbit, while, more generally in other
cases, the transition may be from n:m/pT to `:q for ` 6= n and/or
q 6= m. Later, we also consider higher excitation frequencies ω for
which it is possible to have pT periodic orbits with a low number of
impacts over pT.

B. Modeling and calibrating the soft impact dynamics

In contrast to the hard impact setting, the soft impact model
includes dynamics for impacts with the compliant membranes on
both ends of the capsule, with elastic coefficient k and a linear dis-
sipation coefficient c, shown in Fig. 1(c). Hence, the soft impact
model includes additional equations of motion that account for the
motion of the ball while it is in contact with one of the membranes.
Specifically, maps M5 and M6, shown in Fig. 2, must be included in
order to describe the dynamics of the ball while in contact with the
membrane.

The equations of motion [Eq. (1)] are the same for both the
hard and soft impact models, since these capture the dynamics when
the ball is not in contact with the membrane. The difference is in the
way the two models treat the contact with the membrane. We define
U = Y − Z as the relative displacement for the soft impact model
when the ball is not in contact with the membrane, to distinguish
it from X used for the hard impact model. Furthermore, we use Uc

to denote the relative displacement while the ball is in contact with
either membrane, corresponding to maps M5 and M6. Combining
the equations of motion for U and Uc yields the system,

U ′′ = −g sin(β) + A cos(ωτ), for | U | <
s

2
(11)

U ′′
c = −g sin(β) + A cos(ωτ) − k

mb

sign(Uc)

(

|Uc | − s

2

)

− c

mb

U ′
c for | Uc |≥ s

2
.

In general, there is a finite time interval for contact with the mem-
brane, which we denote as

1τj,c = τj,f − τj,c (12)

for τj,c (τj,f) the time at which the ball initiates (terminates) contact
with the membrane. During this interval, Uc describes the motion of

the system. Furthermore, we assume continuity of displacement and
velocity at these times,

U(τ−
j,c) = Uc(τ

+
j,c), U(τ+

j,f ) = Uc(τ
−
j,f ),

(13)

U ′(τ−
j,c) = U ′

c(τ
+
j,c), U ′(τ+

j,f ) = U ′
c(τ

−
j,f ).

In order to systematically identify the differences between the
soft and hard impact models under external excitation, we calibrate
parameters in the setting where both models are expected to yield
similar results, namely, for large values of k, approximating k → ∞.
For large k, the dissipative effects linked to the linear dissipation
coefficient c in the soft model and restitution coefficient r in the hard
model should result in the same dynamics for both models. To facili-
tate our analysis, we calibrate the models in the absence of excitation
A = 0, observing that the properties of the membrane such as the
dissipation coefficient c and restitution coefficient r do not change
with external influences. We consider simply the dynamical behav-
ior of the membrane with a given initial velocity at the beginning
of the contact interval. Then, using the dynamics given by Eq. (11)
in the large k limit and A = 0, where τj,c ≈ τj,f, we find the value c
for which the ratio ρ of velocities before and after contact with the
membrane is comparable to r = −X′(τ+

j )/X′(τ−
j ), that is,

ρ = −
U ′
(

τ+
j,f

)

U ′
(

τ−
j,c

) = −
U ′

c

(

τ−
j,f

)

U ′
c

(

τ+
j,c

) ≈ r. (14)

We refer to this ratio ρ as the effective restitution coefficient of
the soft model, obtained for all k, as studied in Sec. III. For A = 0
and given the initial contact velocity U′(τ−

j,c), Uc(τ ) is obtained from
Eq. (11),

Uc(τ ) = U ′(τj,c)

ω1

e−c(τ−τj,c)/2mb sin(ω1(τ − τj,c)) ± s

2
, (15)

where ω1 =
√

ω2
0 − (c/2mb)

2. Note that for large k, the natural fre-

quency associated with the mass-membrane system, ω0 =
√

k/mb,
is also large. Then, the contact time 1τj,c in Eq. (12) is small, that is,

τj,f = π/ω1 + τj,c ∼ τj,c + O(k−1/2) (16)

for large k. By differentiating Uc(τ ) in Eq. (15) with respect to τ , we
obtain the velocity of the ball while in contact with the membrane,

U ′
c(τ ) = U ′(τ−

j,c)e
−c(τ−τ

−
j,c)/2mb

×
( −c

2mbω1

sin(ω1(τ − τ−
j,c)) + cos(ω1(τ − τ−

j,c))

)

. (17)

To complete the calibration, we evaluate U ′
c(τ ) in Eq. (17) at

τ = τj,f from Eq. (16), and divide by U ′(τ−
j,c) to get the expression

for ρ,

ρ = e
−

cπ

2mω1 . (18)

Then, we set ρ = r and solve for c in terms of r,

c = −2
√

kmb ln(r)
√

π 2 + (ln(r))2
. (19)
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By this calibration of c, the soft impact model mimics the impact-
induced energy losses of the hard impact model when A = 0 and k
is large. In that setting, Eq. (16) indicates a small O(k−1/2) difference
between the models, observed for the shift in impact times.

Throughout the comparisons in Sec. III, for a given set of
parameters [mb, r] in the hard impact model, together with a given
large k in the soft model, the value of c is calibrated as in Eq. (19).
Then, c varies with k according to Eq. (19) for all values of k that
are studied for the given mb and r. The calibrated value of c for
A = 0 facilitates a systematic comparison of the soft and hard impact
models under excitation, allowing us to track the differences as the
ball impacts the membranes with different values of the elastic coef-
ficient k. Since we are interested in the forced system for A 6= 0,
the excitation phase influences the system dynamics and 1τj,c is no
longer negligible in these comparisons.

C. Analytical results for the soft impact model

It is useful to obtain analytical expressions for the relative dis-
placement and velocity over the contact interval 1τj,c, which provide
representations of the dynamics that are complementary to numer-
ical simulations. While a complete analytical treatment is not the
focus of this study, we provide some examples in Sec. III A that show
how these results may provide insight beyond the computations.

Solving for Uc(τ ) and Uc
′(τ ) from Eq. (11) and using con-

tinuity as in Eq. (13), we obtain the analytical expression for the
displacement and velocity of the ball while in contact with the soft
membrane,

Uc(τ ) = ∓CI cos(ωτ + CII) + CIIIe
−ζ(τ−τj,c) cos(ω1(τ − τj,c))

+ CIVe−ζ(τ−τj,c) sin(ω1(τ − τj,c)) − mbg sin β

k
± s

2
, (20)

U ′
c(τ ) = −ωCI sin(ωτ + CII)

+ e−ζ(τ−τj,c)(cos(ω1(τ − τj,c))(CIVω1 − CIIIζ )

− sin(ω1(τ − τj,c))(CIIIω1 + CIVζ ), (21)

where ζ = c/2mb, ω2
1 = ω2

0 − ζ 2 and the signs ∓ and ± indicate
whether the ball is in contact with the right (top sign) or left (bottom
sign) membrane. The constants CI and CII are given by the partic-
ular solution of the system, while CIII and CIV are determined by
continuity in Eq. (13), to get

CI = A

ω2
0

√

√

√

√

(

2ζ
ω

ω0

)2

+
(

1 −
(

ω

ω0

)2
)2

,

(22)

CII = arctan











−
2ζ

ω

ω0

1 −
(

ω

ω0

)2











,

CIII = ∓CI cos(CII + φj,c) + mbg sin β

k
,

CIV = U ′(τj,c) ± CIω sin(CII + φj,c) + ζ + CIII

ω1

,

(23)

where φj,c = mod(ω1τj,c, 2π). The transition time τj,f is obtained by
setting Uc(τ ) = ∓s/2 and τj+1,c can be determined from the equa-
tions for Mi for i = 1, . . . , 4, analogous to the procedure for hard
impacts. Then, we have the set of equations,

Mi, i = 1, . . . , 4 : −g
1τj,f

2

2
sin β − A

ω2
cos (ω1τj,f + φj,f)

+ U ′(τj,f)1τj,f − A

ω
sin (φj,f)1τj,f

= 3 − A

ω2
cos (φj,f), (24)

M5, M6 : CI cos(ω1τj,c + φj,c + CII) + CIIIe
−ζ1τj,c cos(ω11τj,c)

+ CIVe−ζ1τj,c sin(ω11τj,c) = ∓mbg sin β

k
, (25)

where 1τj,f = τj+1,c − τj,f, and φj,f = mod(ω1τj,f, 2π).
It is useful to recall that the maps Mi for i = 1, . . . , 4 are defined

in the same way as in the hard impact model away from impact, with
relative velocity continuous across τj,c and τj,f as in Eq. (13). After
determining 1τj,c (1τj,f), one can then differentiate the maps from
Eqs. (24) to (25) with respect to time and find the velocity at which
the ball leaves the membrane U ′(τj,f) and the velocity of the next
impact U ′(τj+1,c), completing the definition of the maps,

Mi, i = 1, . . . , 4 : U ′(τj+1,c)

= −g1τj,f sin β + A

ω
sin(ω1τj,f + φj,f) + U ′(τj,f), (26)

Mi, i = 5, 6 : U ′(τj,f) = −ωCI sin(ω1τj,c + φj,c + CII)

+ e−ζ1τj,c(−CIII(ζ cos(ω11τj,c)

+ ω1 sin(ω11τj,c)) + CIV(−ζ sin(ω11τj,c)

+ ω1 cos(ω11τj,c))). (27)

These equations can be used to find the periodic solu-
tions semi-analytically using the periodicity conditions U ′

c(τj,c)

= U ′
c(τj+l,c), Uc(τj,c) = Uc(τj+l,c) and mod(τj,c, 2π/ω) = mod

(τj+l,c, 2π/ω) for some integer l. This is done by finding a solu-
tion, given by a specific sequence of l maps, that minimizes the cost
function,

S = |U ′
c(τj+l,c) − U ′

c(τj,c)|2 + |mod(τl+j,c, 2π/ω) − mod(τj,c, 2π/ω)|2.
(28)

This approach, which we refer to as the optimization method,
can detect any given solution of the system. Its stability can be
classified by the matrix product of the corresponding sequence of
Jacobians,

J = J1 ◦ J2 ◦ · · · ◦ Jl, (29)

where Ji is the Jacobian of the ith map.36
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We demonstrate the use of this semi-analytical method in
Sec. III A, illustrating how it finds unstable solutions that are not
captured by simple numerical integration, but nevertheless influ-
ence the dynamics. It is also useful in identifying bi-stable behav-
ior, which may or may not be found via simulation, depending
on the choice of initial conditions (IC). Based on other analytical
studies,36–38,40 we expect this semi-analytical method to be useful for
future parametric studies and understanding influence of sequences
of bifurcations on the energy output.

D. Energy harvesting

So far, we have provided the results in terms of the relative dis-
placements and velocities. These results, particularly those for the
impact velocities, play a central role in the energy harvesting capabil-
ities of the VI-EH device. By applying an electric potential difference
V along the membrane thickness, the deformation by the impact-
ing ball yields a change of the membrane capacitance, consequently
generating electrical energy. The change in capacitance can be cal-
culated using the surface area As of the polymer and its thickness w.
Both of these quantities can be written in terms of the penetration
of the ball δ = |x| − s/2, the ball radius rb, and the membrane initial
radius R0, resulting in

As =







πR2
0,

2πrb
2(1 − cos (α)) + πR2

0 − π(rb cos (α))2

cos (α)
,

(30)

with

cos (α) = −2rb(δ − rb) + 2R0

√

R2
0 + δ2 − 2δrb

2(R2
0 + (δ − rb)

2)
. (31)

Assuming that the membrane is incompressible, its change in thick-
ness w due to deformation is given by the conservation of volume,

w = w0

πR2
0

As

. (32)

Finally, when a voltage is applied along the thickness of the mem-
brane, its capacitance CM can be approximated by

CM(δ) = εMAs

w
, (33)

where εM is the membrane permittivity.
The change in capacitance due to an impact produces a change

in potential energy that can be harvested using the circuit model
described in Ref. 9, with the energy Ej extracted from the device at
the jth impact given by

Ej = 1

2

Cmax,j + CT

Cmin + CT

(Cmax,j − Cmin)V
2. (34)

Here, Cmax,j = CM(δmax,j) is the maximum capacitance of the poly-
mer reached at the maximum penetration of the ball δmax,j,
Cmin = CM(0) is the minimum capacitance reached when the mem-
brane has no deformation, and CT is the capacitance of a transfer
capacitor used to transfer the energy from the circuit to the battery.
It is important to highlight that Eq. (34) assumes that the circuit
dynamics is much faster than that of the mechanical system, and,
hence, the dynamics of both systems are decoupled from each other.

The maximum displacement δmax,j, appearing in the definition
of energy Ej via As [Eq. (30)], is given by the displacement Uc

when U ′
c = 0 in the soft model and, thus, is calculated directly from

Eq. (21). In contrast, the hard model does not include an expres-
sion for δmax,j, since it is based on impact with a rigid wall. Thus,
the calculation of Ej for the hard impacts uses an expression that is
calibrated to the soft model, similar to the calibration of the linear
dissipation coefficient c. We recall that for large k and without exci-
tation the soft and hard impact models exhibit similar behavior, so
we use the maximum value of Uc without excitation from Eq. (15)
to provide δmax,j for the hard impact model. Specifically, we take the
maximum of Eq. (15), based on a calibrated c as in Eq. (19), to obtain
the maximum displacement for the hard model,

δmax,j =
|X′(τ−

j )|
ω0

e
ln(r)
π arctan

(

− π
ln(r)

)

. (35)

Finally, Ej can be used to calculate the average energy output P
per half period for a specific n:m/pT periodic orbit or, analogously,
the time-averaged energy output for aperiodic attractors of the sys-
tem. We define P as the sum of the energy output over impacts,
divided by an appropriate time interval length τP for that behavior,

P =
∑Nimp

j=1 Ej

τP

. (36)

For example, if the orbit has period pT, then Nimp is the total number
of impacts in pT, with Ej the energy generated by the jth impact. In
that case, we take τP = 2pT in order to compare P and Ej, the energy
for a single impact. For example, for 1:1 orbits, P and Ej should have
the same value. If the behavior is aperiodic, then P is computed over
a larger time interval τP to capture its approximate time-averaged
output. Throughout this paper, we calculate P using the electrical
and dimensional parameters as provided in Table I.

Another important measure in energy harvesting is the effi-
ciency of the device. In this study, we focus on output energy since
the comparisons in this work are restricted to cases that are subjected
to the same input energy. Thus, an improvement in output energy
will consequently mean an improvement in efficiency.

III. PARAMETRIC ANALYSIS OF HARD VS SOFT

IMPACTS

We analyze the effects of key parameter combinations, whose
variation yields different dynamics in the soft and hard impact

TABLE I. Parameters for energy harvesting and their values, used for both hard and

soft impact models.

Description Symbol Value Unit

Initial thickness of the membrane w0 0.000 25 m
Initial radius of the membrane R0 0.006 3 m
Membrane permittivity εM 4.15 × 10−11 F/m
Circuit transfer capacitance CT 99.35 nF
Applied voltage V 2000 V
Radius of the ball rb 0.005 0 m
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models. Two different non-dimensionalizations of the equations
facilitate these comparisons: variation of the system parameters of
capsule size s or excitation amplitude A vs natural frequency ω0 of
the membrane, and a second focused on the variation of excitation
frequency ω vs natural frequency ω0.

A. Influence of effective size vs natural frequency

First, we define a non-dimensional parameter d = sω2

Aπ2 based
on the ratio between the capsule length and excitation amplitude,
thus representing the effective capsule size. Following the form

of d, the non-dimensional displacement is defined as x = Xω2

Aπ2 for
the hard impact model, which satisfies the non-dimensionalized
equations of motion,

ẍ = −γ + cos(π t) if | x |< d

2
,

ẋ(t+) = −rẋ(t−) if | x | =d

2
.

(37)

For the soft impact model, we define the non-dimensional displace-

ment as u = Uω2

Aπ2 , which satisfies

ü =



















−γ + cos(π t) for | u | <
d

2
,

(38)

−γ + cos(π t) − κ2sign(u)

(

|u | −d

2

)

− µu̇ for | u |≥ d

2
.

Here, κ = ω0π

ω
is proportional to the ratio of natural frequency ω0

and the excitation frequency ω, and ˙ indicates the derivative with
respect to the non-dimensional time t = τω

π
. There are also non-

dimensionalized parameters γ = g sin(β)

A
, capturing the influence of

gravity via the ratio g/A of gravitational acceleration to excitation
amplitude, and the non-dimensionalized dissipation coefficient of
the membrane µ = cπ

mω
.

An analysis of Eqs. (38) and (37) reveals the parameters that
influence the different responses of the soft and hard impact mod-
els. Since µ is proportional to c, which is calibrated in the soft impact
model to reproduce the dynamics of the hard impact model for large
stiffness, then κ is the only remaining parameter through which we
can track these differences. By definition, κ ∝ ω0/ω compares the
time scale of the membrane dynamics with that of the excitation. If
κ � 1, then the contact time 1τj,c for the ball with the membrane is
very short, and the soft impact model mimics the hard impact case.
In contrast, when κ = O(1), then 1τj,c is longer, and the dynamics
of the soft impact model exhibits substantial differences from the
hard impact model. Here, the non-dimensionalization allows us to
track these differences, even in the case of a membrane with large
stiffness (often assumed as large k), where intuition would suggest
similar behavior for both models. Equation (38) indicates that for
large stiffness, the soft model dynamics can diverge from that of
the hard one when the excitation frequency is high enough so that
κ = O(1). Accordingly, we define the system with κ � 1 as stiff,
corresponding to the scenario where the soft impact model closely
approximates the hard impact results.

Based on this preliminary analysis of the non-dimensionalized
models, we numerically explore the system dynamics by integrating

TABLE II. Hard and soft impact model parameters values in non-dimensional and

dimensional form, the latter maintaining the connection to the physical system. This

set of parameters is used in Fig. 5 for the calibration of hard impact and soft impact

models following Eqs. (14)–(19).

Symbol Value Unit Symbol Value Unit Symbol Value

mb 0.0035 kg k 560.0 N/m κ 400.0
A 1.0 m/s2 β 0.0 rad γ 0
g 9.8 m/s2 r 0.5 . . . µ 172.363
s 0.3 m ω π rad/s d 0.3

Eq. (38) using a fourth order Runge–Kutta method. The parameters
of the model are taken from Refs. 36 and 9, with the values listed
in Table II unless stated otherwise. Bifurcation diagrams in terms
of the capsule length d illustrate the system response. They are con-
structed using a continuation-like approach: for each value of d, we
discard the first 375 excitation periods to avoid transient behavior,
then graph the impact velocities vs d for the following 25 excita-
tion periods. This provides the impact velocities for the attracting
dynamical behavior over a sufficiently long time. The result also
gives the initial condition for the subsequent value of d, decreased
by 0.002, and the procedure is repeated. In this case, decreasing d
is achieved by decreasing s but a similar result can be obtained by
increasing A.

1. Influence of effective size d in the hard impact

model

Before comparing the soft and hard impact models, we first
analyze the computational results for the bifurcations in the hard
impact model in terms of the non-dimensionalized capsule size d.
These results illustrate the different behaviors appearing for large
(infinite) stiffness of the membranes, which are of interest when
considering variable stiffness in the soft impact model below. Sub-
sequently, we consider the variation of d vs κ , via variation of the
natural frequency ω0 of the membrane.

Several different dynamical behaviors are identified in the
bifurcation diagrams for the hard impact model in Figs. 3(a)
and 3(b), as illustrated by the corresponding phase planes in panels
3(c)–3(f). The relative impact velocities ẋ for the hard impact case
are shown in Fig. 3(a), while the bifurcation diagram constructed
with the Poincaré section of ẋ based on the excitation phase ωτj = 0
is shown in Fig. 3(b). As we are considering the case β = 0, a peri-
odic orbit or aperiodic behavior that is not symmetric with respect
to the transformation x → −x [shown in black in panels (a) and (b)]
co-exists with its reflected counterpart, shifted by a phase difference
of π rad (shown in purple). For longer capsule length with a larger
distance separating the membranes, 0.3 > d > 0.186, the attracting
system behavior is a 1:1 periodic orbit (alternating impacts on left
and right ends of the capsule) depicted in the phase plane of Fig. 3(f).
For d = 0.186, there is a grazing incidence of the inner loop of the
1:1 periodic orbit creating a 2:4/2T stable periodic orbit [Fig. 3(e)].
Co-existing with the stable orbit is a 1:2 unstable periodic orbit,
depicted in red on the diagram and on the phase planes of Fig. 3(e).
This orbit and its instability are obtained semi-analytically via the
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FIG. 3. Bifurcation diagrams for the hard impact model. (a) Impact velocities for the reflected pairs of solutions, in black (IC: x = 0.137 46 and ẋ = 0.616 85) and purple
(IC: x = −0.057 29 and ẋ = −0.473 88). Red indicates unstable orbits identified using (28) and (29). Dashed vertical red lines indicate values of d for which phase planes
are shown in (c)–(f). (b) Relative velocity corresponding to the Poincaré section for vanishing excitation phase [mod(ωτ , 2π) = 0], with corresponding values in the phase
plane shown in (c) for d = 0.12. Phase planes corresponding to black results from panel (a) (above) and reflected counterparts (below) at (d) d = 0.16, (e) d = 0.18, and
(f) d = 0.2. Solid red vertical lines indicate the capsule ends. (g) Energy collected at each impact in black and mean energy of the behavior P in green. (h) Excitation phase
at impact [mod(φj , 2π)]. Dashed horizontal blue line indicates φj = π . Axes without units are non-dimensional variables. Parameter values except for d (s) given in Table II.
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optimization method (28) and (29) based on the maps Mj. The insta-
bility of this orbit underlies the influence of grazing, which then
pushes the system to a stable orbit with both a longer period and an
increased number of impacts. For smaller values of d, there is a series
of period doubling bifurcations that is quenched by the grazing inci-
dence of one of the unstable periodic orbit inner loops, generating
a transition to a 2:3/2T stable orbit, shown in Fig. 3(d). The same
behavior continues down to d = 0.124 where further decreases of
d yield aperiodic, apparently chaotic behavior, with some periodic
windows containing high period orbits. Figure 3(c) shows the val-
ues in the phase plane corresponding to the Poincaré section of zero
phase difference from panel (b) for d in one of the chaotic windows.

Figure 3(g) shows the energy Ej for each impact and the aver-
age energy generated P for orbit (36), thus quantifying the energy
harvesting performance of the hard impact system at different d. In
general, there are two different types of sequences of impact veloci-
ties corresponding to different ranges of P. Periodic 1:1 orbits with
large relative impact velocities ẋj, corresponding to alternating maps
M1 and M2 in Fig. 2, generate energy in the range of 3 mJ to 4 mJ
of energy per impact. In contrast, those periodic orbits or attrac-
tors with a combination of high and low values of ẋj generate lower
P. This second type of behavior corresponds to 1:n periodic orbits
with n > 1, which include subsequent impacts on the same side
of the capsule, corresponding to maps M3 and M4 in Fig. 2. For
example, 1:2 periodic motion is defined by the composition of maps
M1 ◦ M2 ◦ M3, with M3 yielding a low energy output below 0.3 mJ.
Then, the 1:1 periodic solution in Fig. 3(e) yields a higher power
output P than for other 1:n orbits, noting also that P increases with
d. It may seem surprising that there are no drastic jumps in P that
might be expected in transitions from 1:1 to 1:n behavior for n > 1,
with only the slope of P changing with these types of transitions.
This is partly due to the choice of parameters and reflects the choice
of P as an averaged energy output over time, in contrast to averag-
ing over impacts. For n > 1, the additional impacts per period in
1:n orbits tend to have low impact velocity, so that transitions to 1:n

orbits typically yield smaller increases in energy per time interval, as
compared with the decreases in energy per impact.37

The difference in the relative impact velocities shown in (a) for
hard impacts is closely related to φj as shown in Fig. 3(g), which is
the excitation phase at impact that captures the phase shift of the
impact relative to the external oscillation of the apparatus. Larger
phase shifts result in larger ẋj, particularly when the velocities of the
ball Z′

j and the capsule Y′
j have opposite sign. In contrast, subsequent

impacts on the same side occur when the ball and capsule are close in
phase, yielding small ẋj. The time series depicted in Fig. 4 illustrate
this contrast, where panel (a) shows that period 1:1 orbits are usually
phase locked, having a fixed phase shift with sgn(Y′

j) = − sgn(Z′
j).

In contrast, Fig. 4(b) illustrates 2:1 periodic orbit, where a reduced
phase shift of the first impact on the bottom yields lower ẋj, followed
by a second impact on the bottom with sgn(Y′

j) = sgn(Z′
j), yielding

small ẋj.

2. Influence of effective size d vs stiffness κ in the soft

impact model

We analyze the results from the soft impact model, first com-
paring the stiff case κ = ω0π/ω � 1 to the hard impact model.
Then, we consider smaller values of ω0 while fixing the excitation
frequency at ω = π as used in the calibration of the soft model (see
Table II).

Figure 5 compares the results for the hard and soft impact
models for κ = 400 (k = 560 N/m). By comparing both bifurcations
diagrams and phase planes, it is clear that the models agree well
with each other. The differences between the bifurcation diagrams
of Fig. 5(b) are related to co-existing reflected orbits for β = 0, with
the soft impact model in close agreement to the left/right reflection
of the hard impact model results. Given the sensitivity near bifur-
cation points (in this case a bifurcation from 1:1 to either 2:1 or 1:2
behavior), small changes in the parameters can result in transfers to
reflected orbits. This can be verified by comparing Figs. 5(c)–5(f)

FIG. 4. Time series of the displacements for the hard impact model shown in Fig. 3, depicting when impacts occur. (a) d = 0.2, (b) d = 0.18. Red lines show the impact
boundaries (capsule ends) while the black line is the trajectory of the ball. Horizontal dashed blue lines present the points where the capsule velocity modulus has the highest
value (excitation has a phase of π/2 and 3π/2). Black circles highlight the low relative velocity impacts (repeated impacts on the same side).
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FIG. 5. Bifurcation diagrams for soft (black) (IC: u = 0.058 53 and u̇ = −0.478 98) and hard (magenta) impact models for parameters as in Table II, except for d. (a) Impact
velocities, with dashed vertical red lines indicating values of d for which phase planes are shown in (c)–(f). (b) Relative velocity corresponding to the Poincaré section for
vanishing excitation phase, with corresponding values in the phase plane shown in (c) for d = 0.12. Phase planes corresponding to black results from panel (a) and respective
hard model results in magenta at (d) d = 0.16, (e) d = 0.18, and (f) d = 0.2. Solid red vertical lines indicate the capsule ends. The presented orbits are overlapped and only
the soft model is apparent. An unstable orbit is depicted in red. (g) Effective restitution coefficient ρ for the soft impact model. (h) Time interval for contact between the ball
and the membrane. (i) Energy collected at each impact in black Ej and mean energy output in green P. (j) Soft impact model excitation phase at each impact, with dashed
blue horizontal line for φj,c = π .
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with Figs. 3(c)–3(f), showing the matching periodic orbits for the
two models. We emphasize that the matching orbits were obtained
by simulating the system with different ICs so that the results cor-
respond to the attracting system behavior. Another difference in the
soft impact model is the shift in the range of d values where periodic
windows between chaotic behavior are observed. This is expected
as the narrow periodic windows of hard impacts are sensitive to
parameter or model perturbations. As shown in Fig. 5(g), the soft
impact model yields a narrow range of ρ ratios instead of a fixed
r as given in the hard model, with the distribution of the ρ values
concentrated at the reference value r = 0.5, as follows from the cal-
ibration of c for large κ . The spread in ρ is due to small differences
in the excitation phase φj,c at each impact, due to the (small) time
interval 1τj,c during which the ball is in contact with the membrane
as shown in Fig. 5(h). The resulting differences in the phase φj,c at
impact can be observed by comparing Fig. 5(j) with Fig. 3(h). The
energy output at each impact Ej and average energy output P are
also the same for both models, as shown by comparing Figs. 5(i)
and 3(g). The close comparisons for the soft and hard impact models
across all performance variables in the case of κ = 400 demonstrate
that the calibration based on Eqs. (14)–(19) successfully captures the
dynamics of the hard impacts for large membrane stiffness.

Once the calibration is established at large κ = 400, it is possi-
ble to explore other parameters ranges for the soft impact model, to
identify differences with hard impacts. We consider different values
of ω0 (and thus κ), with ω fixed. (The influence of different values
of ω is studied in Sec. III B.) Figure 6 shows different bifurcation
diagrams with κ as the bifurcation parameter at different values of
d, with other parameters as in Table II. Large values of κ indicate
large stiffness, for which the soft impact model results agree with
the hard impact case indicated by dashed red lines. Smaller values
of κ indicate a soft membrane, for which the behavior naturally dif-
fers from that of the hard impact model. The diagrams are shown
for κ on a log scale in order to cover a sufficiently large parameter
range. Figure 6(a) depicts the results for d = 0.2, where a 1:1 orbit is
maintained for most values of κ until a rapid decrease to near zero
impact velocities at κ = 4.04. For these lower values of κ , we iden-
tify co-existence of different stable attractors. The bi-stable orbits at
κ = 3, shown in the phase plane in Fig. 7(a), are a 1:1 orbit with
low impact velocities, shown in blue, and a 2:2/3T orbit with higher
impact velocities, shown in black. The bi-stability indicates that for
lower values of κ , the nonlinear effects due to impacts can have lit-
tle influence on the system behavior via the low energy orbits. Yet,
for the same parameters, the nonlinear effects still play a significant

FIG. 6. Bifurcation diagrams of impact velocities vs κ for (a) d = 0.2 m, with increasing κ (blue) and decreasing κ (black), (b) d = 0.18, (c) d = 0.16, and (d) d = 0.12.
Red dashed horizontal lines depict the impact velocities given by the hard model in the same conditions. No dashed red lines are traced for the chaotic case.
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role in the overall system dynamics, since co-existing attractors can
be accessed at higher energy levels. We note that the optimization
method (28) and (29) is helpful in identification of the bi-stable
orbits since they may not be observed numerically in the absence
of the necessary ICs.

Figure 6(b) shows the results for d = 0.18, with a 2:4/2T peri-
odic solution for large κ and transitions to 1:2 and then to a 1:1
periodic solution at κ = 28.57. Complementary phase planes are
shown in Fig. 7(b) for a sequence of periodic orbits correspond-
ing to Fig. 6(b). From these phase planes, we see that as κ decreases
the penetration of the ball into the membrane increases. Similarly,
for the case of d = 0.16, shown in Fig. 6(c), as κ decreases the sys-
tem undergoes transitions from a 1:2 periodic orbit to 1:1 behavior
at κ = 57.14. For lower values of κ with d = 0.16, the 1:1 impact
velocities increase to a maximum at κ = 3.84, followed by a rapid
decrease of the impact velocities for smaller κ . Figure 7(c) shows
that at higher impact velocities, the periodic orbits are nonlinear and
stay in contact with the membrane for longer times. However, as κ

decreases further, so does the influence of the impacts, as the peri-
odic orbits are then ellipsoidal with small amplitudes corresponding
to a weaker influence of the nonlinearities on the dynamics. The
nearly linearly behavior coincides with increased softness of the
membrane, which in turn yields low impact velocities in which
the influence of the impact nonlinearity is reduced. This behavior
extends across a range of parameters, as verified in the diagrams
studied throughout this section. Finally, Fig. 6(d) shows the case
where chaos is present for large κ = 400, with its attractor seen in
Fig. 5(c). As the value of κ decreases from κ = 400, the chaotic
behavior eventually transitions to a 1:2 orbit at κ = 36.36 and then
to a 1:1 solution at κ = 12.12.

Considering these examples together, we observe the following
trends: in parameter regimes where the stiff system exhibits 1:n peri-
odic behavior for larger n, reducing the stiffness via decreasing κ has
a noticeable impact, leading to 1:n behavior for reduced n and even-
tually 1:1 behavior. Since bifurcations to 1:n behavior for larger n
occur for smaller values of d, it is in this range of parameters where
we see the greater influence of reduced κ . This trend follows intu-
itively from the fact that the differences between the soft and hard
impact models are in the modeling of the impacts so that behavior
with a larger number of impacts per period are more sensitive to
variations in κ .

The influence of κ has implications for energy generation.
Decreasing κ leads to a period-T behavior with only high velocity
impacts. These impacts have the largest contribution at an optimum
value of κ for a given d. However, the impact velocity decreases sub-
stantially for κ below this optimum, with the possibility for abrupt
changes in the system behavior as shown in Fig. 6(a). As discussed
above, this behavior follows from the softness of the membrane and
low impact velocities that reduce the influence of the impact nonlin-
earity. While the orbit becomes more and more linear as κ decreases
past its optimum value, it is important to notice that nonlinear
effects persist for smaller κ , apparent through the other attracting
orbits that coexist with the near-linear response as observed for
d = 0.2 and κ = 3 in Fig. 7(a). From a design perspective, low val-
ues of κ can be beneficial for energy extraction, but the system must
be designed in such a way to ensure κ does not decrease past the
value corresponding to optimal impact velocity or be perturbed to
any co-existing low impact velocity behavior.

Before further exploring the influence of κ on the bifurcation
structure, we note that Figs. 3–7 all show the prevalence of symmetry

FIG. 7. Phase planes for specific κ , with parameters as in Fig. 6. (a) Coexistence of stable of 1:1 (black) and 2:2/3T (blue) orbits at d = 0.2 m and κ = 3. (b) Sequence of
orbits for various κ with d = 0.18, illustrating transition from 2:4/2T to 1:2 to 1:1 behavior. (c) Phase planes for d = 0.16 for smaller values of κ near the value with maximum
impact velocity. Dashed red vertical lines indicate the capsule ends.
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breaking bifurcations. Specifically, for larger d, e.g., d = 0.275 in
Fig. 5(a), the stable 1:1 orbits are symmetric in the phase plane36

(not shown in Fig. 5), with equal magnitude of impact velocities
|X′(τj| for left and right impacts. As d decreases, there are symme-
try breaking transitions from symmetric 1:1 orbits to asymmetric 1:1
orbits. The asymmetry in the 1:1 behavior is clear from phase planes
such as Fig. 3(f), 5(f), and 7)(b), with increased asymmetry in the
trajectories between impacts leading to grazing and transitions to
1:n or n:1 behavior. This type of symmetry breaking bifurcation has
been systematically explored in the hard impact model,36–38,40 occur-
ring for decreasing d as also observed here for both hard and soft
impacts. It can appear for any value of inclination angle β , including
β = 0. As would be expected, for β > 0, this type of asymmetry is
enhanced throughout the dynamics.38 Figures 6 and 7 indicate that
this bifurcation from symmetric to asymmetric 1:1 orbits also occurs
for increasing κ as well as for different combinations of r and ω as
apparent from Figs. 11 and 16. As we see below, the soft impacts
allow a second type of symmetry breaking bifurcation, associated
with the dynamics over the finite contact time 1τj,c. Thus, this sec-
ond type of asymmetric bifurcation cannot be observed in a model
with instantaneous impacts.

Figure 8 illustrates the influence of κ on the bifurcations with
d as the bifurcation parameter, comparing these for several values of
κ . Figure 8(a) shows that as κ decreases, the regions with 1:1 periodic
orbits with larger impact velocities u̇ are pushed to lower values of d,
until the 1:1 behavior becomes the attractor for all d as can be seen
for κ = 12.65. For smaller values of κ , there is a range of apparently
chaotic behavior for larger values of d, with its phase plane dynamics

shown in Fig. 11(a) for d = 0.2. In Fig. 8(a), we observe the same pat-
terns as in Fig. 6, noting that orbits with larger numbers of impacts
per period, e.g., for smaller d and larger κ , experience substantial
qualitative changes as κ decreases. The values of ρ shown in Fig. 8(b)
for each impact also yield valuable insights. For larger values of κ , ρ
varies slightly around its reference value r from the corresponding
hard impact model. However, as κ decreases, the variability of val-
ues in ρ increases, particularly for chaotic ranges. It is important to
emphasize that, for softer membranes and lower impact velocities,
there are values of ρ > 1. This does not violate any energy princi-
ple as the greater contact time 1τj,c in these cases enables energy
to be transferred from the capsule to the ball, which is not possible
for hard impact models. Also, another type of symmetry breaking
orbit can appear in the soft impact model, characterized by asym-
metric values of ρ that diverge from the reference value r for the
hard model. This behavior is observed for κ = 12.65 and d = 0.142,
where a symmetry breaking bifurcation yields two branches in the
diagram for ρ vs d, highlighted by a black circle in Fig. 8(b). There is
also a slight asymmetry in the contact times 1τj,c on the left and right
ends. Note that this symmetry breaking bifurcation follows from the
dynamics during the finite contact, rather than from the dynamics
in between impacts and, thus, is not observed in the hard impact
model. The asymmetry in ρ follows from the behavior of the exci-
tation phase φj,c, which has slight variation around φj from the hard
impact model, diverging from it only when there is qualitatively dif-
ferent behavior for the soft impacts. Figure 8(c) indicates that this
change in φj,c corresponds to the symmetry breaking point of ρ,
shown in panel (b). The asymmetric 1:1 periodic orbit is shown in

FIG. 8. Soft impact model bifurcation diagram for varying d, medium reference restitution coefficient r = 0.5 and for various values of κ = 400, 126.50, 40.00, 12.65, 4.00.
(a) Impact velocities. (b) Effective restitution coefficient ρ for each impact. (c) Excitation phase φj,c at first contact with membrane for each impact. (d) Time spent in contact
1tj,c for each impact. Parameter values as in Table II unless otherwise noted.
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Fig. 11(b) for d = 0.12 and has a signature in the bifurcation struc-
ture vs κ shown in Fig. 6(d). As d decreases further, these branches
show additional bifurcations, with jumps in impact phase, veloc-
ity, and energy. For larger values of ρ, the impact velocities can be
even higher for small κ , for which the system appears to be nearly
optimized in terms of both the contact time 1tj,c and the corre-
sponding excitation phase φj,c, yields the ideal conditions for energy
harvesting.

Finally, Fig. 8(d) shows 1tj,c (non-dimensionalized 1tj,c), the
time that the ball stays in contact with the membrane at the jth
impact. This value has substantial variation when the system dynam-
ics is aperiodic or chaotic for the softest membrane shown with
κ = 4. In contrast, for periodic behavior, 1τj,c is small for larger κ

steadily increasing as κ decreases. This can be seen also from the
phase planes in Fig. 11(d) for d = 0.2, showing the sequence of 1:1
orbits corresponding to the κ values from the bifurcation diagrams
in Fig. 8(a). This sequence illustrates that the penetration into the
impact region of the orbit, and consequently 1τj,c, increases as κ

decreases, while the system is in the nonlinear regime.
After exploring the influence of κ on the bifurcation diagram

vs d, we investigate also the influence of the reference restitution
coefficient r. Figures 9 and 10 show bifurcations vs the parameter
d for small r = 0.1 and large r = 0.95, respectively. In each case,
we recall that the calibration of the soft impact model is applied
for mb = 0.0035 kg and κ = 400 so that Eq. (19) gives c using the
respective values of r. Then, the soft impact model closely repro-
duces the behavior of the hard impact model for the largest value of

κ shown, which is the basis for comparison as we vary κ (ω0) and
thus also c via Eq. (19).

For small and large values of reference value r, we observe
similar influences of κ as previously described for r = 0.5. As κ

decreases, we observe the same shift of the bifurcations of 1:1 peri-
odic behavior to a range of smaller values of d. The diagrams show
that the 1:1 behavior is dominant over much of the parameter range
shown, except for small d where chaotic behavior dominates for
r = 0.95 (see Fig. 10), and for small d, large κ , and r = 0.1, where
1:n orbits survive. One prominent difference for r = 0.1 is shown in
Fig. 9(b), where we observe symmetry breaking in the values of ρ for
larger values of κ as compared with r = 0.5. This observation follows
intuitively, since stronger energy dissipation in such systems facili-
tates stable asymmetric orbits, consequently breaking the symmetry
of φj,c which in term yields different values of ρ at each impact. We
also observe bifurcations to asymmetric 1:1 behavior and asymmet-
ric values of ρ, for reference r = 0.95 and κ = 12.65. For smaller d
on this branch for larger r, the symmetry breaking leads to chaotic
behavior (see Fig. 10). A second difference is the chaotic behav-
ior that is observed for r = 0.95 over a larger range of κ for small
d, as shown, e.g., in Fig. 6(d). This behavior is consistent with the
chaotic behavior observed for large r and small d over wide parame-
ter ranges in previous studies of the hard impact model,36 suggesting
that smaller values of κ are required to induce periodic behavior for
larger ρ and reference r.

For r = 0.1, small values of κ and larger values of d result in
nearly non-impacting orbits, where very soft impacts yield relatively

FIG. 9. Soft impact model bifurcation diagram for varying d, low reference restitution coefficient r = 0.1, and for various values of κ = 400, 126.50, 40.00, 12.65, 4.00,
other parameters as in Fig. 8. (a) Impact velocities. (b) Effective restitution coefficient ρ for each impact (c) Excitation phase φj,c at first contact with membrane for each
impact. (d) Time spent in contact 1tj,c for each impact.
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FIG. 10. Soft impact model bifurcation diagram varying d, high reference restitution coefficient r = 0.95 and for various values of κ = 400, 126.50, 40.00, 12.65, 4.00, other
parameters as in Fig. 8. (a) Impact velocities. (b) Effective restitution coefficient ρ for each impact. (c) Excitation phase φj,c at first contact with membrane for each impact
(d) Time spent in contact 1tj,c for each impact.

slow motion of the ball. Then, the ball rarely impacts the larger cap-
sule ends, as indicated by the sparse relative impact velocities in
Fig. 9(a) captured only sporadically within the time window used
computationally. In contrast, for smaller d and small κ , the ball
regularly impacts the membrane in its 1:1 orbit, collecting energy
from the capsule motion via a shift in φj,c, the effective restitution
coefficient ρ, contact time 1τj,c, and the energy output increase.

B. Excitation frequency vs natural frequency of the

membrane

In this section, we consider the influence of the membrane stiff-
ness k = mbω

2
0 on bifurcations in terms of excitation frequency ω

so that the non-dimensionalization does not vary with the bifur-
cation parameter ω, and we choose the capsule length s and the
natural frequency of the polymer ω0 as the reference parameters.
This choice yields displacements υ = U/s for the soft model and
χ = x/s for the hard model and time variable t∗ = τω0. Then, the
non-dimensionalized equations of motion are

ϋ =



















−g∗ + A∗ cos(ω∗t∗) if | υ |< 1

2
,

(39)

−g∗ + A∗ cos(ω∗t∗) − sign(υ)

(

|υ| − 1

2

)

− c∗υ̇ if |υ| ≥ 1

2
,

where g∗ = g sin(β)

sω2
0

, A∗ = A

sω2
0
, ω∗ = ω

ω0
, and c∗ = c

mbω0
. Note that the

parameter ω∗ = π/κ , recalling κ as the non-dimensional parame-
ter from Sec. III A that characterizes the soft membrane. Then, an

increase of ω∗ has the same influence as reducing κ , namely, that
the soft impact dynamics diverge from the hard impact dynam-
ics. Since we are interested in the influence of ω0 on the variability
of the bifurcations in terms of ω, in this section, we show the
results with ω and k = mω2

0 on separate axes, rather than in terms
of ω∗.

As in Sec. III A, we calibrate the soft impact model with the
hard impact model for k large (and ω0 large) so that the corre-
sponding bifurcation diagram serves as a reference for other values
of ω0. Figure 12(a) shows the bifurcation diagram for the dimen-
sional relative impact velocities U ′(τj,c) (magenta) and X′(τj) (black)
vs ω, while Fig. 12(b) shows the bifurcation diagram based on the
Poincaré section of U and X when the excitation phase is zero. The
bifurcation results show several windows of periodic behavior and
chaos for different values of ω, illustrated in the corresponding phase
planes. For low values of excitation frequency, the system presents
a period-T solution with multiple impacts, including both higher
and lower relative impact velocities [panel (c)]. As ω increases,
this orbit undergoes several grazing bifurcations until a chaotic
region is reached. Beyond the chaotic response, a 1:1 periodic orbit
emerges at ω = 3.12 rad/s [panel (d)]. This initiates a window of 1:1
behavior, which is the largest periodic window for this parameter
combination. At ω = 6.89 rad/s, another chaotic behavior appears
sharply, continuing up to ω = 9.97 rad/s [panel (e)]. This complex
behavior gives way to a period-3T solution [panel (f)], following
a narrow sequence of periodic orbits with a successively shorter
period. Finally, at ω = 11.93 rad/s, the system is again chaotic, which
continues for larger values of ω.
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FIG. 11. Phase planes for specific values of
κ , d and reference r . (a) Chaotic response at
κ = 4, reference r = 0.5 and d = 0.25. The
chaotic orbit is depicted in gray, while the
Poincaré section for zero impact phase is
in black. (b) Asymmetric periodic orbit at
κ = 12.65, reference r = 0.5 and d = 0.12.
Phase planes for κ as shown in Figs. 8 and 9,
using the same color codes, for (c) symmetric
1:1 orbits for d = 0.16 and reference r = 0.1,
and (d) symmetric and asymmetric 1:1 orbits for
d = 0.2 and reference r = 0.5.

The curious sequence of a number of impacts per excitation
period T, identified from the periodic windows in panels (a) and
(b), has implications for the energy output as shown in Fig. 12(g).
For small values of ω, the system impacts each side of the cap-
sule multiple times before the period of excitation T is reached. In
that case, the time scale associated with ω is long relative to that
of the system dynamics, associated with ω0. Since both large and
small impact velocities U ′

j,c with large and small Ej are included

in the orbit, the average power P remains relatively high but fluc-
tuates with ω. For slightly larger ω, there is a mismatch between
the period of the excitation and the system dynamics, yielding a
chaotic response, dominated by low velocity impacts and thus low
energy output. Increasing ω further, the excitation frequency is large
enough to match the system dynamics, yielding period-T 1:1 behav-
ior over a large window of ω values. The 1:1 orbits provide the most
consistent large energy output for Ej and P. For ω increased further,
the system experiences several periods of excitation for each impact,
leading to orbits whose periods are composed of multiple excitation
periods. Not only is the energy per impact Ej lower than for the 1:1
orbits, but the time-averaged power P is even lower, given the less
frequent impacts. The periodic windows for these orbits are inter-
spersed with windows of chaotic behavior, again with low energy
output.

Comparing the results for both models, we observe complete
agreement between soft and hard impacts for k = 560 N/m, thus
establishing a good reference scenario for exploring other values of
k and, thus, ω0. Likewise, the success of the calibration is observed
from the values of ρ for each impact, highly clustered around the ref-
erence value of r = 0.5 as shown Fig. 12(i). The slight variation in ρ

around the reference value r = 0.5 appears to decrease with increas-
ing ω for the periodic responses, while in chaotic regions, it spreads
out due to the different impact phases for these dynamics, as shown
in Fig. 12(h). The same type of variation can be seen for 1τj,c in
Fig. 12(j), where in the chaotic regions it is larger for some values
than the reference values.

Following the calibration of the soft model with the hard
model at k = 560 N/m, we consider the bifurcation diagrams as k
varies. Figures 13–15 show the U ′

j vsω bifurcation diagrams for

several different values of k and three different reference values
r = 0.5, 0.1, 0.95. For the mid-range reference value r = 0.5, we see
a similar sequence of bifurcations as in Fig. 12 for all but the small-
est value of k (softest membrane). Multi-impact T-period orbits
are observed for small ω, and larger windows of 1:1 orbits are fol-
lowed by a transition to chaos for intermediate ω. Periodic windows
with 1:1/nT behavior for n > 1, occur for larger ω, also shown in
Fig. 16(b), with chaos dominating as ω increases further. For the
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FIG. 12. Bifurcations diagrams in terms of parameter ω for hard (magenta) and soft (black) impact models, with ω0 = 400 rad/s, s = 0.2 m, and remaining parameters
as in Table II except for ω. (a) Impact velocities. (b) Poincaré section for φj = 0 (mod(ωτ , 2π) = 0. Phase planes for values of ω indicated by dashed red vertical lines
in (a) show periodic solutions at (c) ω = π/3 rad/s, (d) and ω = π rad/s, (f) ω = 10.99 rad; and (e) chaotic attractor at ω = 7.79 rad/s. Solid red vertical lines show the
impact boundaries. (g) Energy per impact Ej in black and mean energy of the behavior P in green. (h) Excitation phase at impact mod(φj,c, 2π), with dashed blue horizontal
line indicating φj,c = π . (i) Effective restitution coefficient ρ for each impact. (j) Time spent in contact with the membrane for each impact 1tj,c. Phase planes and 1tj,c are
shown in non-dimensional units.
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FIG. 13. Soft impact model bifurcation diagrams for r=0.5, varyingω and k = 560, 56, 5.6, 0.56, 0.056 N/m (ω0 = 400.00, 126.50, 40.00, 12.65, 4.00 rad/s), other parameters
as in Fig. 12. (a) Impact velocities. (b) Effective restitution coefficient ρ for each impact. (c) Excitation phase at impact φj,c. (d) Time spent in contact for each impact. Velocities
are given in dimensional units. (e) Energy at each impact. (f) Average power output.

FIG. 14. Soft impact model bifurcation diagrams for varying ω, reference restitution coefficient r = 0.1, and various values of k = 560, 56, 5.6, 0.56, 0.056 N/m
(ω0 = 400.00, 126.50, 40.00, 12.65, 4.00 rad/s). Other parameters as in Fig. 13. (a) Impact velocities. (b) Effective restitution coefficient ρ for each impact (c) Excitation
phase at first contact with membrane for each impact (d) Time spent in contact for each impact. (e) Energy at each impact. (f) Average energy output.
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FIG. 15. Soft impact model bifurcation diagram for varying ω and reference restitution coefficient r = 0.95, s = 0.2 m, excitation amplitude of A = 1.0 m/s2, and various
values of k = 560, 56, 5.6, 0.56, 0.056 N/m (ω0 = 400.00, 126.50, 40.00, 12.65, 4.00 rad/s). Other parameters as in Fig. 13. (a) Impact velocities. (b) Effective restitution
coefficient ρ for each impact. (c) Excitation phase at first contact with membrane for each impact. (d) Time spent in contact for each impact. (e) Energy at each impact.
(f) Average energy output.

smallest value of ω0 = 4 rad/s, i.e., the softest membrane considered,
1:1 orbits are observed for a limited range of smaller ω, which exhibit
larger average energy output P. For this value of ω0 and larger values
of ω, we again observe behavior with sporadic or no impacts over
multiple excitation periods, as also observed in Fig. 9 for larger d.
Figure 16(a) shows the 1:1 behavior in the phase plane for the values
of k as in Fig. 13 and ω = π , in agreement with Sec. III A.

Looking to the other measures, panel (b) shows a spread of ρ

in chaotic regions or high periodic asymmetric behavior, otherwise
concentrated near the reference value r = 0.5. As seen previously
in Fig. 10, for low impact velocities in the chaotic regime, there
are cases where ρ > 1, which indicates that the membrane gives
energy to the ball as the interaction between the capsule and the ball
depends on the impact phase and the time spent in contact. Further-
more, there is a slight decrease in ρ for smaller values of k = 0.56
and 0.056 N/m and low ω. In panel (d), larger 1τj,c is observed
over a larger range of ω as k decreases, as observed in Sec. III A
for softer membranes. In panels (e) and (f), increases in (average)
impact energy Ej (P) are consistent with increased U ′

j,c and increased

1τj,c. In general, energy produced by the membrane increases as k
decreases up to k = 0.56 N/m, due to the change in excitation phase
φj,c. Increased Ej and P for the softest membrane k = 0.056 N/m
is limited to low ω, corresponding to 1:1 behavior. Chaotic behav-
ior observed for larger k tends to reduce mean energy output, as it
includes impacts with small velocities.

For the small reference value r = 0.1, decreasing k limits the
chaotic regions to higher ω, with periodic behavior dominating over

much of the range of ω shown. For larger and medium values of
k, this includes T-periodic orbits with multiple impacts per period
including low velocity impacts with U ′

j,c near zero. The range of this

behavior increases with decreasing k, extending over the entire range
of ω for k = 5.6 N/m. This asymmetric, multiple impact behavior
is captured by the multiple branches of small ρ in panel (b), and
a branch of 1τj,c in panel (d) that increases with decreasing ω.
For smaller k = 0.56 N/m, this behavior is replaced by 1:1 orbits,
reflected in ρ near the reference value r = 0.1, and 1τj,c increasing
with decreasing k for softer membranes. For the softest membrane
k = 0.056 N/m, as seen for r = 0.5, the 1:1 behavior is limited to low
values of ω, once again with larger values of Ej and P. As ω increases
in this case, 1τc, j decreases and ρ increases, corresponding to nearly
linear behavior illustrated in Fig. 16(c). This behavior is analogous
to observations from Fig. 6, where an optimal orbit is reached for
a small value of k, below which the system exhibits nearly linear
behavior. Here, the membrane has less time to dissipate the energy
of the ball, yielding larger ρ, but limited 1τc, j results in near-linear
dynamics and reduced energy output. Higher ω in this softest case
again yields sporadic or no impact behavior over multiple excitation
periods.

Considering larger r = 0.95, for larger values of ω0 > 4, the
bifurcation sequence is relatively simple, with chaotic behavior for
lower ω and 1:1 behavior or 1:1/nT, n > 1, for higher ω. For periodic
orbits, ρ is clustered near the reference value of r and 1τj,c is small.
As ω0 decreases, we again see the influence of high ω, for which
the periodic behavior shifts to 1:1/nT orbits with smaller impact
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FIG. 16. Phase planes corresponding to the dynamics shown
in bifurcation diagrams in Figs. 13–15, using the same color
codes for different values of k. (a) 1:1 orbits for r = 0.5
and ω = π , as in Fig. 11(d); (b) 1:1/3T orbits for r = 0.5
and k = 560 and 56 N/m with ω = 10 rad, and k = 5.6 with
ω = 10.5 rad. (c) Phase planes for r = 0.1, ω = π rad, and
k as in Fig. 14 (overlapping for larger k). (d) Phase planes for
r = 0.95, ω = 10 rad, and k as in Fig. 15.

velocities over multiple excitation periods. Figure 16(d) highlights
this transition via phase plane comparisons. For the smallest ω0 = 4,
there is an increased range of chaotic behavior with low impact
velocities for high ω. The behavior of ρ and 1τj,c track these transi-
tions as observed above in Fig. 12. Likewise the largest energy output
is observed for 1:1 behavior, increasing with the softer membranes.
However, the range of this behavior is limited to lower ω for softer
membranes, which exhibit low velocity impacts and reduced energy
output for higher ω.

IV. CONCLUSIONS

We develop a soft impact model for the vibro-impact energy
harvesting pair, previously studied in the context of hard (instan-
taneous) impacts. In the model, a ball moves freely along the axis
of an externally excited capsule, with dielectric polymer membranes
at each end. Energy is generated as the ball impacts and deforms
the membranes, converting mechanical to electrical energy9 using
the variable capacitance principle. While the hard impact model
is based on instantaneous impacts, the soft impact model includes
additional equations for the motion when the ball is in contact with
the membranes, modeled as a linear spring.41,42

In order to systematically compare its dynamics with that of
the corresponding hard impact model, we establish a consistent cal-
ibration procedure for the soft impact model in the setting of large

elastic coefficient k for the membrane. This procedure matches the
reference restitution coefficient r of the hard impact model to the
ratio ρ of relative velocities before and after a soft impact with the
membrane, yielding a relationship for the linear dissipation coeffi-
cient c in terms of r, k, and the mass of the ball. This relationship
is then used to explore the dynamics of soft impacts over a range
of values of k, including small k corresponding to soft impacts on
compliant membranes with low natural frequencies ω0.

While the bulk of the comparisons of soft and hard impact
dynamics is carried out numerically, we also provide analytical
descriptions, based on maps of the dynamics in-between impacts for
the hard model, supplemented by maps in the soft impact model that
describe the dynamics when the ball is in contact with the mem-
brane. The analytical results provide complementary information
about influential unstable and bi-stable behaviors that can be missed
within numerical simulations. We capture the variation in dynam-
ics and bifurcations in terms of several different parameters: device
length, stiffness of the impact boundary, excitation frequency, and
reference restitution coefficient.

We explore two main bifurcation scenarios motivated by
two different non-dimensionalizations. The first considers effec-
tive capsule size d, proportional to capsule length s and inversely
proportional to the excitation amplitude A, with fixed excitation
frequency ω. The second considers variable excitation frequency
ω and fixed capsule length. We studied these two scenarios for
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different reference restitution coefficients, r = 0.1, 0.5, 0.95, com-
paring changes in the bifurcation sequences for different natural
frequencies ω0 of the soft membrane.

For variable d and fixed ω, softer membranes tend to promote
regular 1:1 orbits (alternating left/right impacts) and other periodic
behavior, shifting grazing and period doubling bifurcations with
more complex behavior to smaller values of d. This is particularly
apparent for smaller r. Within this scenario, we found that typically
the optimal energy outputs are achieved for soft membranes, with
the output above that predicted by the hard impact model. However,
for stiffness parameters slightly below this optimum, impact veloc-
ity and energy outputs drop sharply, yielding low output, sometimes
with co-existing complex behavior. This comparison suggests that
soft impacts may be desirable, but they are also sensitive to parame-
ter fluctuations near optimal energy output. In particular, for small
κ , we observed substantial ranges of d for which the orbits exhib-
ited sporadic or weak impacts or no impacts at all. This absence of
energy generation occurred for a range of smaller reference values
r (corresponding ρ in the soft impact model), which increased with
excitation frequency ω.

The bifurcation sequence for variable excitation frequency ω

shows several types of periodic behavior in between windows of
chaotic behavior. Multi-impact T-periodic behavior appears for
lower ω, 1:1 orbits appear for mid-range ω, and pT p > 1 peri-
odic orbits with few low impact velocity impacts occur for larger
ω. The largest energy output generally occurs for 1:1 orbits, since
the multi-impact orbits and chaotic behavior include low velocity
impacts, while the pT periodic orbits occur less frequently. Decreas-
ing the elastic coefficient k and, thus, ω0, tends to expand the range
of 1:1 periodic behavior for all r (to which ρ is calibrated) and, thus,
increase the energy output. However, for higher ω and softer mem-
branes, other less desirable behaviors appear: low impact velocity
orbits occur for larger r, and orbits with sporadic/infrequent impacts
occur for mid-range and smaller r. The parameter range of multi-
impact T-periodic orbits also expands for reduced r, and chaotic
behavior is sustained for large r and low ω in all but the softest
membranes.

In comparing the dynamics of the soft impact model with that
of the hard impacts, we found a number of unexpected results. The
soft and hard impact models can disagree in the setting of stiff mem-
branes with large k, where one might expect them to agree when the
excitation frequency is sufficiently high. Then, for a given excita-
tion frequency ω, the calibration of the models requires a sufficiently
large k. In addition, Figs. 6–10 and 12–15 demonstrate that the
divergence of soft and hard impact model solutions also depends on
the number of impacts of the behavior, the excitation frequency, and
the device length. Therefore, it is not possible to pin-point a value
of κ where the hard and soft models diverge for all scenarios. The
analysis using the non-dimensional parameter κ ∝ ω0/ω provides a
useful guide, as in Sec. III A, indicating that the soft and hard models
agree for sufficiently large κ , where “sufficiently large” depends on
other parameters. Furthermore, in addition to symmetry breaking
bifurcations related to the motion between impacts, also observed
for hard impact models, we found additional symmetry breaking
bifurcations driven by the dynamics while the ball is in contact
with the membrane. These occur in the variable effective restitu-
tion coefficient values ρ from the soft model, which are dependent

on the excitation phase at impact, shifted relative to the excitation.
The bifurcations produce asymmetric motions with different energy
generation and stability properties that are not captured in the hard
impact model with a constant r.

We focus here on the horizontal case β = 0. While we have
not explored the setting of the inclined energy harvester β 6= 0, nev-
ertheless preliminary results (not shown) show qualitatively similar
bifurcation sequences and effects of soft impacts as observed here for
β = 0. As has been observed for hard impact models, β 6= 0 removes
symmetric phase plane behavior and tends to encourage symmetry
breaking bifurcations as well as grazing bifurcations from the basic
1:1 alternating left-right periodic behavior, which generates higher
energy outputs. However, given the complex influence of β on the
sequence of different continuous and non-smooth bifurcations,38 we
leave a thorough investigation of the influence of β within the soft
impact model to future work.

From a practical point of view, the polymer-based membranes
are rather soft and highly stretchable. This implies that the hard
impact model, being easier to study analytically and implement
numerically, may not correctly capture the device dynamics when
the excitation frequency is not large relative to the natural frequency
of the membranes. In this case, a soft impact model should be used
to better predict the energy harvesting device power output. More-
over, in some cases (e.g., small k and relatively high ω), the hard
model may provide unrealistic results, where it demonstrates consis-
tent power output, in contrast to low or no power output within the
soft impact model. Furthermore, the use of the hard impact model
may lead to underestimated energy output values, coming from
lower estimated impact velocity compared to the corresponding soft
model value, as presented in Fig. 6.
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