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This paper presents a first passage type reliability analysis of strongly nonlinear stochas-
tic single-degree-of-freedom systems. Specifically, the systems considered are a dry fric-
tion system, a stiffness controlled system, an inertia controlled system, and a swing. These
systems appear as a result of implementation of the quasioptimal bounded in magnitude
control law. The path integration method is used to obtain the reliability function and the
first passage time. �DOI: 10.1115/1.2967896�
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1 Introduction
Reliability and safety are the major concerns in designing and

developing modern mechanical systems. A system’s reliability
may be considered as the probability that no system failure occurs
within a given time interval. Often the reliability problem is asso-
ciated with finding the probability that a system’s response stays
within a prescribed domain, an outcrossing of which leads to im-
mediate failure. A problem of this type is called the first passage
problem �1–3�, and it has been extensively studied by a number of
authors. The first passage problem is directly related to a solution
of the corresponding Pontryagin equation, written with respect to
the first excursion time T. Unfortunately, an exact analytical solu-
tion to this problem, even for a linear system, is yet to be found.
A few strategies have been proposed over the years to deal with
this type of problems. One of them is based on an averaging
procedure and further problem reformulation for the system’s re-
sponse amplitude or energy. The Markov property of the energy
envelope has been used to evaluate the probability of the first
passage time for a linear system �4�, systems with nonlinear stiff-
ness �5�, or nonlinear damping �6�.

A number of problems have been solved numerically and ana-
lytically since then. A numerical solution to the Pontryagin equa-
tion has been developed in Refs. �7–9�, whereas a numerical so-
lution to the backward Kolmogorov–Feller equation, for a system
subjected to a Poisson driven train of impulses, has been proposed
in Ref. �10�.

New analytical and numerical approaches have been reported in
Refs. �11–13�. The method proposed in Ref. �11� can only be used
in practice for problems where the stochastic aspect can be repre-
sented by a very limited number of random variables. Hence, it
would not seem to be applicable for problems with stochastic
process inputs of the kind studied in this paper. In Ref. �12�, a
method is described for estimating the exceedance probability of
time variant systems with random parameters by using an im-
proved response surface technique. However, the accuracy of such
a method for the problems considered in this paper is hard to
assess. Recently, a new tail-equivalent linearization method has

been developed in Ref. �14�, which may be used for reliability
estimates for single as well as multiple-degree-of-freedom
�MDOF� systems for stationary inputs.

Special attention should be paid to the reliability of systems,
which appears as a result of some design or optimization proce-
dures. Indeed, the purpose of these procedures is to satisfy certain
criteria, often not related to the system’s reliability. In fact, their
implementation may lead to a deterioration of the system’s reli-
ability. For instance, consider a stochastic optimal control prob-
lem, which aims to reduce the mean response energy of a single-
degree-of-freedom �SDOF� undamped linear oscillator, subjected
to a zero-mean external Gaussian white noise, by means of a
bounded in magnitude control force. It has been demonstrated in
Ref. �15� that an optimal control law for a steady-state response is
represented by a dry friction law. On the other hand, it has been
shown by asymptotic analysis in Ref. �16� that a stochastic system
with dry friction is less reliable than that of a system with linear
damping. Therefore, a reliability investigation of controlled sto-
chastic systems may be of special importance.

This paper is devoted to a reliability investigation of four types
of controlled systems by application of the numerical path inte-
gration �PI� method �17�. The PI code is validated by comparing
some results to the results of the Monte Carlo simulations as well
as results obtained for an equivalent linear system. The latter
makes sense only for “weak” nonlinearities, i.e., for small values
of the control parameter r �r�1�. First, a system with dry friction
is studied; its asymptotic analysis has been made in Ref. �16� with
respect to the system’s energy. The other three SDOF systems
under consideration are systems with parametric control of their
parameters. They appear as a result of application of bounded in
magnitude control forces, applied consequently to the system’s
stiffness, inertia, or by varying a pendulum’s length �swings�
�18–20�. Although the idea of controlling a system’s response by
changing its parameters is far from being new �see examples in
Ref. �21��, the proposed strategy leads to control forces of the
signum type. It makes these systems strongly nonlinear and their
analysis highly complicated, especially for large “amplitude” of
jumps at switching �values of r close to unity�. Since the available
asymptotic techniques provide reliable estimates for nonlinear
systems only in the case of small nonlinearities, it was decided to
conduct a numerical investigation, comparing some obtained re-
sults to the reliability results for an equivalent linear system. The
latter is constructed using values of an equivalent viscous damp-
ing coefficient and effective frequency. The path integration
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method has been used earlier for these systems to estimate the
stationary response probability density function �PDF� of the state
space variables �22�. Here the PI method has been adapted to
obtain the reliability characteristics of the considered systems. The
approach is based on previous work reported in Ref. �23�.

2 Problem Statement and Numerical Approach

2.1 Path Integration Approach to Reliability. The SDOF
dynamic systems to be investigated in this paper can all be written
in the following form:

Ẍ + g�X,Ẋ� = ��t� �1�

where g�· , ·� denotes a function to be specified in each particular
case, while ��t� throughout denotes a zero-mean stationary Gauss-
ian white noise process satisfying E���t���t+���=D���� for a
positive intensity parameter D. The application of the external
quasioptimal control policy leads to a dry friction law, whereas
the application of the quasioptimal control force results in para-
metrically controlled systems with a jumpwise variation of either
the system’s stiffness, moment of inertia, or both. The latter hap-
pens through a variation of the pendulum’s length and such a
system is well known as a swing.

Equation �1� will be construed as an Itô stochastic differential
equation �SDE�, that is,

dZ�t� = h�Z�t��dt + bdB�t� �2�

where the state space vector process Z�t�= �X�t� ,Y�t��T

= �X�t� , Ẋ�t��T has been introduced, h= �h1 ,h2�T with h1�Z�=Y and
h2�Z�=−g�X ,Y�, b= �0,�D�T, and B�t� denotes a standard Brown-
ian motion process. From Eq. �2� it follows immediately that Z�t�
is a Markov process, and it is precisely the Markov property that
will be used in the formulation of the PI procedure.

The reliability is defined in terms of the displacement response
process X�t� in the following manner, assuming that all events are
well defined:

R�T�x0,0,t0� = Prob�xl � X�t� � xc;t0 � t � T�X�t0� = x0,Y�t0� = 0�
�3�

where xl ,xc are the lower and upper threshold levels defining the
safe domain of operation. Hence, the reliability R�T �x0 ,0 , t0�, as
we have defined it here, is the probability that the system response
X�t� stays above the threshold xl and below the threshold xc

throughout the time interval �t0 ,T� given that it starts at time t0
from x0 with zero velocity �xl�x0�xc�. In general, it is impos-
sible to calculate the reliability exactly as it has been specified
here since it is defined by its state in continuous time, and for
most systems the reliability has to be calculated numerically,
which inevitably will introduce a discretization of the time. As-
suming that the realizations of the response process X�t� are piece-
wise differentiable with bounded slope with probability one, the
following approximation is introduced:

R�T�x0,0,t0�

	 Prob�xl � X�tj� � xc, j = 1, . . . ,n�X�t0� = x0,Y�t0� = 0�
�4�

where tj = t0+ j�t, j=1, . . . ,n, and �t= �T− t0� /n. With the as-
sumptions made, the right hand side �rhs� of this equation can be
made to approximate the reliability as closely as desired by ap-
propriately choosing �t, or equivalently n. Within the adopted
approximation, it is realized that the reliability can now be ex-
pressed in terms of the joint conditional PDF

fX�t1�¯X�tn��X�t0�,Y�t0��· , . . . , · �x0,0�

as follows, which is just a rephrasing of Eq. �4�:

R�T�x0,0,t0� 	 

xl

xc

¯

xl

xc

fX�t1�¯X�tn��X�t0�Y�t0�

��x1, . . . ,xn�x0,0�dx1 ¯ dxn �5�

Due to the Markov property of the state space vector process
Z�t�= �X�t� ,Y�t��T, we may express the joint PDF of
Z�t1� , . . . ,Z�tn� in terms of the transition probability density func-
tion

p�z,t�z�,t�� = fZ�t��Z�t���z�z�� = fZ�t�Z�t���z,z��/fZ�t���z��,

�fZ�t���z�� � 0�

in the following way:

fZ�t1�. . .Z�tn��Z�t0��z1, . . . ,zn�z0� = �
j=1

n

p�zj,tj�zj−1,tj−1� �6�

This leads to the expression �z0= �x0 ,0�T, dzj =dxjdyj, j=1, . . . ,n�.

R�T�x0,0,t0� 	 

−	

	 

xl

xc

¯

−	

	 

xl

xc

�
j=1

n

p�zj,tj�zj−1,tj−1�dz1 ¯ dzn

�7�

which is the path integration formulation of the reliability prob-
lem. The numerical calculation of the reliability is done iteratively
in an entirely analogous way as in standard path integration. To
show that, let us introduce a reliability density function �RDF�
q�z , t �z0 , t0� as follows:

q�z2,t2�z0,t0� =

−	

	 

xl

xc

p�z2,t2�z1,t1�p�z1,t1�z0,t0�dz1 �8�

and �n
2�,

q�zk,tk�z0,t0�

=

−	

	 

xl

xc

p�zk,tk�zk−1,tk−1�q�zk−1,tk−1�z0,t0�dzk−1,k = 3, . . . ,n

�9�

The reliability is then finally calculated approximately as �T= tn�.

R�T�x0,0,t0� 	 

−	

	 

xl

xc

q�zn,tn�z0,t0�dzn �10�

The complementary probability distribution of the time to fail-
ure Te, i.e., the first passage time, is given by the reliability func-
tion. The mean time to failure �Te can thus be calculated by the
equation

�Te =

0

	

R���x0,0,t0�d� �11�

To evaluate the reliability function, it is required to know the
transition probability density function p�z , t �z� , t��, which is un-
known for the considered nonlinear systems. However, from Eq.
�2�, it is seen that for a small t− t� it can be determined approxi-
mately, which is what is needed for the numerical calculation of
the reliability. A detailed discussion of this and the iterative inte-
grations of Eqs. �8� and �9� are given in Refs. �22,24�. Concerning
the integrations, there is, however, one small difference between
the present formulation and that described in these references. In
Eqs. �8� and �9�, the integration in the x-variable only extends
over the interval �xl ,xc�. The infinite upper and lower limits on the
y-variable are replaced by suitable constants determined by, e.g.,
an initial Monte Carlo simulation �MCS�.

If the system response Z�t� has a stationary response PDF fZ�z�
as t→	, it follows that the conditional response PDF
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f �Z�tn��Z�0�,xl�X�tj��xc;0�j�n−1��z� will also reach a stationary density,
say, q��z�, when tn→	, provided the system has finite memory.
This means that the reliability process eventually becomes memo-
ryless, and hence the RDF converges q�z , tn �z0 , t0�→q��z�Ke−�tn

for some constants K and � as tn→	. Also the numerical method
should reach stationarity in the conditional density. This also im-
plies that the numerically estimated reliability function must be
exponential, since the same relative amount of probability mass
leaves the system at every iteration. Hence in the end, the only
thing one should need for a good reliability estimate is the behav-
ior in the transient phase and the exponential decay thereafter.

2.2 General Comments About the Numerical Procedure.
The numerical calculations were performed for a 256�256 mesh
in the state space, with very high grid resolution around the axes
for the inertia controlled system and swing system, because the
PDFs have discontinuities along the axes and high spikes at the
discontinuity that requires a well adapted spline representation
�22�. More specifically, the grid resolution was determined by an
exponentially decaying function away from each coordinate axis.
Because of the discontinuities, there are no grid points on the axes
themselves. However, the interpolant will be globally smooth and
will assume finite values also on the axes. Hence, there is no true
discontinuity in the interpolant even if the gradients of the inter-
polant may be very large at the axes. The time step was 0.01 for
all simulations, and the noise intensity D was set to 1.0. The initial
choice of time step is determined by the characteristic time con-
stants of the dynamic system, which can be either seen from the
system equations or from a short Monte Carlo simulation of the
dynamic response of the system. As is typically done for verifying
the convergence of numerical solutions, the accuracy of the cal-
culated PI solution may be checked by changing repeatedly, if
required, the size of the time step, for example, by a factor 2.

For all simulations, the reliability was computed using the bar-
riers xc=2.5�x, xc=3.0�x, and xc=3.5�x. The lower barrier is ei-
ther xl=−	, one-sided barrier case, or xl=−xc for two-sided reli-
ability. These bounds were far enough out in the tails that
interpolation of the RDF from Eqs. �8� and �9� was no problem.

It should be mentioned that for all the systems studied in this
paper, the calculated reliability function displayed a distinctive
exponential behavior asymptotically, as one would expect. That is,
after some transient time, the reliability function could not be
distinguished from a straight line when plotted on a logarithmic
scale. In addition, the PDF for the time to failure has a right tail
that is exponential with the same exponent, which again is verified
by plotting the PDF on a logarithmic scale. The oscillatory behav-
ior of the PDFs of the time to failure, as seen on the close ups,
largely reflects the transient dynamics of the systems due to initial
conditions �see Fig. 1, for instance�.

3 Monte Carlo Simulation
To check the numerical results, MCSs have been run for a few

selected cases. The main problem is that the probability of cross-
ing a high reliability level is small, so the simulation will have to
run for a long time before this happens. Since a good approxima-
tion of the PDF for the first passage time needs a large number of
Monte Carlo simulations, this easily becomes a very time consum-
ing method. The verification of the numerical results by Monte
Carlo simulations is therefore carried out on two levels. First, the
expected first passage time is estimated directly from simulated
response time histories for the lowest level �=2.5��, where �
equals the standard deviation of stationary response. For all the
models investigated in this paper, the estimated expected first pas-
sage time obtained by MCS agreed with the corresponding one
calculated by PI within the accuracy of the MCS estimate, that is,
within a few percent.

The second method of verification was based on the observa-
tion that the reliability function and the PDF decays exponentially
after a transient time. A focus on the estimation of the rate of
decay reduces the number of required simulations considerably.
That is, the main statistic to estimate from the stochastic upcross-
ing time T is �, given the formula

P�T 
 t�T 
 ttr� = e−��t−ttr�, t 
 ttr �12�

where ttr stands for the transient time. Equation �12� is an approxi-
mation, since the transient never dies out completely. However,
the equation is asymptotically correct as ttr→	, and numerically
valid for a transient time chosen sufficiently large. An adjusted
maximum likelihood estimator �MLE� for �, which is also unbi-
ased for a fixed transient time ttr, is

�̂ =
n − 1

�i=1
n �Ti − ttr�

�13�

for n independent upcrossing times Ti that are all larger than ttr.
This means that some Monte Carlo simulations with exit time
shorter than the transient time will be discarded, but as the prob-
ability of exiting that early from a start at the origin is small, most
results will be used.

It is important to note that estimating the full PDF, and here
especially the transient behavior, is very time consuming with the
Monte Carlo methods without a parametric model. Path integra-
tion, however, calculates this directly, and if only the transient
behavior is needed, the PDF can be found with high accuracy with
a fairly short simulation.

When comparing the results for the MC and the PI methods,
remember that the strengths and weaknesses of the numerical
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Fig. 1 Probability density of time to failure for the dry friction problem with reliability level 2.5 standard
deviations and r=0.15 for the one- and two-sided cases
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methods are also very different. The main problem for the PI
method is that the PDFs have sharp discontinuities or peaks that
make the interpolation difficult.

The exponent can, however, be calculated between two time
steps from long after the transient has died out.

The MC method relies on the parametric representation of the
PDF after an estimated transient time, which is an approximation.
The point estimates of parameter from MC are here calculated
from 200 random samples and hence have a variance.

Since Ti− ttr is assumed to be exponentially distributed, �̂ / �n
−1� has an inverse gamma distribution, and the variance is

Var��̂� =
�2

�n − 2�
�14�

Hence, instead of estimating the standard deviation of the test
statistic �̂ for the MC simulation, Eq. �14� gives that it is approxi-
mately �̂ /�198=0.07�̂.

The MC simulations were performed for all four systems, and
the estimated values of � from the PI calculations were checked
against the 90% confidence intervals based on the MC results, and
they were all accepted.

4 Results for a Stochastic Dry Friction System
In this section, some derivations made in Ref. �16� for a sto-

chastic system with dry friction are recalled. It is worth mention-
ing that for the parametric systems the stochastic averaging pro-
cedure results in an exponential response PDF for response
energy, whereas the dry friction system has an exponent in power
of the square root of the response energy. Therefore, for the para-
metrically controlled systems, the case of small nonlinearity can-
not be caught by the averaging procedure and needs to be inves-
tigated numerically. For the system with dry friction, it is possible
to use an approximate analysis for a small value of the dry friction
coefficient. Early results on the use of PI for an oscillator with dry
friction are reported in Ref. �25�.

Consider the following nonlinear system, subjected to the zero-
mean, stationary Gaussian white noise ��t� introduced above:

Ẍ + r sign�Ẋ� + 2X = ��t�, 0 � t � tf �15�

Applying the stochastic averaging procedure and following the
derivations made in Ref. �16� the first passage time may be found
as

T�c� =
�Ei�2��c̄� − Ei�2��c��

2�2 −
�c̄ − �c

�
−

ln�c̄/c�
4�2

�16�

c =
E

D/4
, c̄ =

Ē

D/4
, � =

2�2�

�
, � =

r
�D

where Ei�y� is the exponential integral function, D is the noise

intensity, and Ē is the critical value of energy. Thus, an analytical
expression �16� may be used for reliability estimates, keeping in
mind that r should be small. This result may be compared with
one, reported in Ref. �2�, keeping in mind that the value of an
equivalent viscous damping coefficient is equal to

�eq
df =

16r2

3�2D

It can be seen from the comparison with the result for the linear
system �2� that Eq. �16� has an additional second term, which is
non-negative. Moreover, the exponential integral function �16� de-
pends on the square root of the system’s energy, whereas the for-
mula for an equivalent linear system �2� predicts dependence on
the system’s energy itself. Both these facts indicate that the first
passage time to failure for the dry friction system should be less
than that for an equivalent linear system.

Numerical simulations, conducted using the PI method, have
shown that the joint response PDF has a single peak, at small
values of r, which splits into two peaks, moving away from each
other, when the nonlinearity parameter r increases. A peak of the
probability density of time to failure moves left when the value of
r increases, which indicates deterioration of the system’s reliabil-
ity. Figure 1 demonstrates the results of a numerical simulation for
one- and two-sided probability densities of time to failure. It can
be seen from Fig. 1�a� that both densities have similar shapes and

Table 1 Expected time to upcrossing for the dry friction system. All numbers to be Ã103.

p 2.5� 2.5� 3.0� 3.0� 3.5� 3.5�
r One-sided Two-sided One-sided Two-sided One-sided Two-sided

0.15 0.2167 0.1947 0.6009 0.5344 2.6885 2.1427
0.20 0.1344 0.1170 0.3697 0.3166 1.7757 1.2995
0.25 0.0814 0.0689 0.2169 0.1791 1.0834 0.7344
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Fig. 2 One-sided reliability function of the dry friction system for different levels of p
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are almost identical �except the peak value�, which was expected,
since the considered problem is symmetric. Similar behavior has
been observed for other problems investigated here. Thus, figures
for one- and two-sided probability densities of time to failure are
not presented for parametric systems. Figure 2 presents the reli-
ability function for r=0.15 �a� and r=0.25 �b� for different values
of the crossing level p=xc /�x. These results show strong depen-
dence of the reliability function on r, i.e., an increase in r in-
creases the slope of the reliability function, consequently decreas-
ing the time to failure. At first glance, this may seem odd, but
remember that an increase in r leads to a decrease in �x, and
therefore in the critical level. On the other hand, an increase in the
crossing level leads, as expected, to an increase in the first passage
time value for a fixed value of r.

Table 1 presents the results of numerical simulations for the
first passage time. The data in Table 1 may be compared with the
data presented in the first, second, and fourth lines of Table 2.
Direct comparison of these results, for the same level of energy
dissipation in both systems, shows that the dry friction system has
a significantly �at least twice� smaller value of failure time than
that of the equivalent linear system, which indicates a relatively
poor reliability of the dry friction system.

5 Results for Parametrically Controlled Systems
To verify the code and to qualitatively comprehend the new

results, it is proposed to obtain numerical results for a linear sys-
tem, subjected to external Gaussian white noise, in addition to the
Monte Carlo method described in Sec, 3. The results, obtained by
the PI method, very well agreed with the results of MC simula-
tions. To compare these results with results for the considered
nonlinear systems, for small values of nonlinearity parameter, one
has to select a proper value of viscous damping coefficient. It
should be reminded that the value of an equivalent viscous damp-
ing coefficient for stiffness and inertia controlled systems is �eq
=r /�, and this value is tripled for a swing system �18,19�.
Therefore, in order to compare the results it is decided to select
�eq=r /� for r=0.1,0.3,0.5 �=1�. The results for the probability
density function of failure time for the three largest mentioned
values of �eq are shown in Fig. 3. Table 2 presents the results for
the mean time to failure for different values of the equivalent
viscous damping coefficient, corresponding to different values of
r, according to the above mentioned formulas.

5.1 System With Controlled Stiffness. Consider a stochastic
system with controlled stiffness, whose motion is governed by the
following equation:

Ẍ + 2X�1 + r sign�XẊ�� = ��t�, 0 � t � tf �17�

where 0�r�1. The probability densities are obtained numeri-
cally by extrapolating the probability of no upcrossing by an ex-
ponential function and differentiating this numerically. The sam-
pling points were dense �tsamp=0.16 s so that the differentiation
proved to be very accurate. The transient seemed noisy, but a
closer look would show that there is actually a smooth oscillation.

The peak-to-peak period of this oscillation seems to coincide well
with the effective period of the system �22�. An interpretation is
that the system’s variability has to reach a certain level before the
probability of exceedance is substantially high. The first substan-
tial removal of the high-displacement part of the probability den-
sity gradually starts to affect the exceedance probability approxi-
mately one period later. This behavior is consistent with previous
observations, and the same kind of oscillations is also seen in the
PI results for the equivalent linear system.

Figure 4 presents the results of the failure time PDF as a func-
tion of the nonlinearity parameter r. In Fig. 5 one can observe the
reliability function for different values of the upcrossing level p,

Table 2 Linear system with a damping coefficient �: expected time to upcrossing. All numbers
to be Ã103.

p 2.5� 2.5� 3.0� 3.0� 3.5� 3.5�
� One-sided Two-sided One-sided Two-sided One-sided Two-sided

16·0.152 / �3�2� 0.5594 0.4884 1.7249 1.4670 4.7063 4.3196
16·0.202 / �3�2� 0.3808 0.3165 1.2338 0.9869 4.1552 3.5478

0.10 /� 0.2859 0.2281 0.9370 0.7143 3.5829 2.8099
16·0.252 / �3�2� 0.2810 0.2225 0.9331 0.7046 3.6107 2.8128

0.30 /� 0.1710 0.1149 0.6250 0.3927 2.9383 1.8043
0.50 /� 0.1497 0.0909 0.5743 0.3265 2.8247 1.5878
0.90 /� 0.1376 0.0749 0.5418 0.2831 2.6838 1.4232
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Fig. 3 Probability density of time to failure for the linear sys-
tem with reliability level 2.5 standard deviations and r=0.1, 0.3,
and 0.5
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Fig. 4 Probability density of time to failure for the stiffness
control problem with reliability level 2.5 standard deviations
and r=0.1,0.3,0.3, and 0.5

Journal of Applied Mechanics NOVEMBER 2008, Vol. 75 / 061016-5

Downloaded 07 Apr 2011 to 137.195.60.140. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



with r=0.1 �a� and r=0.5 �b� correspondingly. Comparing the
results �a� and �b� indicates that an increase in nonlinearity influ-
ences the system’s reliability much more when small values of the
upcrossing level are selected. Results in Fig. 5 have been com-
pared with results for an equivalent linear system. Direct compari-
son revealed that the behavior of the equivalent system, in terms
of the reliability function, matches the behavior of the stiffness
controlled system for small values of the nonlinearity parameter r.
Meanwhile, detailed comparison for r=0.5 indicates that the stiff-
ness controlled system’s time to failure is bigger than that of the
linear system with the same level of energy dissipation in both
systems. This fact is reflected in Table 3, which shows the mean
failure time for the stiffness controlled system. It should be re-
ported that the observed behavior is different from the behavior of
the two other parametric systems. Namely, it is seen, based on the
numerical results, that there is no monotonic decrease in mean
upcrossing time with a gradual increase in r. However, Monte
Carlo simulations confirm these results for 2.5�x.

5.2 System With Controlled Moment of Inertia. Consider a
system with controlled moment of inertia:

d

dt
��1 + r sign���̇���̇� + 2� = ��t�, 0 � t � tf �18�

where 0�r�1. The exponential behavior for the absorbing prob-
ability density has been observed in this case. Figure 6 presents
results for the probability density function of failure time for p
=2.5 and different values of the nonlinearity parameter. One can
clearly see a trend in the peak shift to the left with the increase of
r. Figure 7 illustrates results for the reliability function for r
=0.1 �a� and r=0.5 �b�, respectively. Comparison with the results
obtained for the stiffness controlled and linear system shows that
the reliability function of the inertia controlled system has a less
steep angle, which indicates that this system is “more” reliable.
This fact is reflected in Table 4, where for small values of r one
can find that Tin�Tsc	Tlin, whereas for large values of r one
obtains Tlin�Tin�Tsc.

5.3 Swings. A governing equation of motion of a mathemati-
cal pendulum with controlled length or swings may be written as

d

dt
�L2�̇� + 2L sin��� = ��t�, 0 � t � tf

�19�
L = �1 + r sign���̇��, 2 = g/L0

For small values of � the nonlinear term in Eq. �19� is changed
to sin�����, thereby giving the linearized equation of a swing.
The smooth oscillatory behavior of the PDF with a frequency
close to its natural frequency has been observed. Figure 8 demon-
strates the results of the numerical simulation for the PDF of
failure time for different values of the nonlinearity parameter r.
All peaks are shifted to the left compared with the peaks for the
other systems investigated above. In Fig. 9 the numerically esti-
mated reliability functions for r=0.1 �a� and r=0.3 �b� are pre-
sented. Since the equivalent damping coefficient for the linearized
system �19� is three times bigger, the result �a� should be com-
pared with the one obtained for the linear system with r=0.3. It
should be reported that the reliability function of the swings has
smaller decay rate, which results in a larger value of mean failure
time. The latter can be observed from Table 5 for the correspond-
ing values of the nonlinearity parameter.

6 Conclusions
In this paper, the authors have considered a first passage type

reliability problem for strongly nonlinear stochastic systems, i.e.,
systems with signum type nonlinearity. The numerical results pre-
sented in this paper are obtained by the path integration method,
which was adjusted to handle reliability problems. The results
were verified by Monte Carlo simulations and the results obtained
by the path integration method for an equivalent linear system.
Generated results demonstrated that the reliability of all the con-
sidered systems strongly depends on the nonlinearity parameter r,
especially for low values of the upcrossing level. It also has been
shown that the systems with parametrically changing parameters
have longer mean time to failure than those of equivalent linear
systems. Thus, the parametrically controlled strongly nonlinear
systems not only provide a way to dissipate the system’s response
energy, but also improve their first passage time reliability. On the
other hand, the dry friction system or the system with an external
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Fig. 5 Reliability function for the stiffness control problem with one-sided barrier for different levels of
p

Table 3 Stiffness control: expected time to upcrossing. All numbers to be Ã103.

p 2.5� 2.5� 3.0� 3.0� 3.5� 3.5�
r One-sided Two-sided One-sided Two-sided One-sided Two-sided

0.1 0.2889 0.2304 0.9513 0.7248 3.6376 2.8612
0.3 0.1865 0.1248 0.7151 0.4453 3.4306 2.1786
0.5 0.1886 0.1130 0.8181 0.4557 4.0836 2.6258
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Table 4 Inertia control: expected time to upcrossing. All numbers to be Ã103.

p 2.5� 2.5� 3.0� 3.0� 3.5� 3.5�
r One-sided Two-sided One-sided Two-sided One-sided Two-sided

0.1 0.4261 0.3261 1.2842 0.8960 5.3885 5.2652
0.3 0.2323 0.1463 0.7717 0.4408 4.8281 4.2013
0.5 0.1574 0.0901 0.5158 0.2766 3.6161 2.3682
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Fig. 7 Reliability function for the inertia control problem with one-sided barrier for different levels of p
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Fig. 9 Reliability function for the swing problem with one-sided barrier for different levels of p
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Fig. 6 Probability density of time to failure for the inertia con-
trol problem with reliability level 2.5 standard deviations and r
=0.1, 0.3, and 0.5
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bounded in magnitude control law has poor reliability compared
with its equivalent linear system, although it is capable of reduc-
ing the system’s response energy.
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