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a b s t r a c t

The paper considers a first passage time reliability problem for systems subjected to multiplicative and
additive white noises. For numerical calculations of the reliability function and the first passage time
the path integration method is properly adapted and used. Some results of numerical calculations are
compared to approximate analytical results, obtained by the stochastic averaging method.
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1. Introduction

The reliabilitymayoftenbe considered as amajor concernwhen
a dynamic system is being designed. Among different reliability
criteria the first passage problem [1,2] is widely used and studied
by a number of authors. It may be defined as the probability
that a system’s response stays within a prescribed domain, an
outcrossing of which leads to immediate failure. It has been shown
that the first passage problem is directly related to a solution of
the corresponding Pontryagin equation, written with respect to
the first excursion time T . An exact analytical solution to this
problem, even for a linear system, is yet to be found. During the
last decades a few strategies have been proposed to deal with this
type of problems. The averaging procedure with further problem
reformulation for the system’s response amplitude or energy
has been used for a linear system [3], systems with nonlinear
stiffness [4] or nonlinear damping [5].

Solving the corresponding Potryagin equation numerically has
been proposed in [6–8], whereas a numerical solution to the
backward Kolmogorov–Feller equation, for a system subjected to
a Poisson driven train of impulses, can been found in [9]. Different
novel analytical aswell as numerical strategies have beenproposed
in recent years by a number of authors [10–12].
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It has been shown recently in [13] that it is possible to adapt
the path integration (PI) method [14,15] for problems of reliability,
including the first passage problem. This paper focuses on a
numerical investigation of the reliability of systems, subjected to
multiplicative and additive white noise. The PI method is used to
construct the reliability function and calculate the first passage
time for two systems. The first one is a half-degree or the first order
systemsubjected tomultiplicative and additive uncorrelatedwhite
noises. This system possesses a very special quality — its higher
order moments are always unstable no matter how you select the
corresponding parameter for stability of lower ordermoments. The
second system considered is a single-degree-of-freedom (SDOF)
system, considered earlier in [16,1]. Using the averaging procedure
it was possible to estimate the first passage time of the system’s
amplitude. In this paper the first passage time of the systems’
displacement and velocity is investigated.

2. Path integration approach to reliability

The motion of a stochastic dynamic system may be expressed
as an Itô stochastic differential equation (SDE):

dZ(t) = h(Z(t))dt + bdB(t), (1)

where the state space vector process Z(t) = (X(t), Y (t))T =

(X(t), Ẋ(t))T has been introduced; h = (h1, h2)
T with h1(Z) = Y

and h2(Z) = −g(X, Y ); b = (0,
√
D)T , and B(t) denotes a standard

Brownianmotion process. From Eq. (1) it follows immediately that
Z(t) is a Markov process, and it is precisely the Markov property
that will be used in the formulation of the PI procedure.
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The reliability is defined in terms of the displacement response
process X(t) in the following manner, assuming that all events are
well defined,

R(T | x0, 0, t0)
= Prob{xl < X(t) < xc; t0 < t ≤ T |X(t0) = x0, Y (t0) = 0}, (2)

where xl, xc are the lower and upper threshold levels defining the
safe domain of operation. Hence the reliability R(T |x0, 0, t0), as
we have defined it here, is the probability that the system’s re-
sponse X(t) stays above the threshold xl and below the threshold
xc throughout the time interval (t0, T ) given that it starts at time
t0 from x0 with zero velocity (xl < x0 < xc). In general, it is im-
possible to calculate the reliability exactly as it has been specified
here since it is defined by its state in continuous time, and for most
systems the reliability has to be calculated numerically, which in-
evitably will introduce a discretization of the time. Assuming that
the realizations of the response process X(t) are piecewise differ-
entiable with bounded slope with probability one, the following
approximation is introduced

R(T |x0, 0, t0)
≈ Prob{xl < X(tj) < xc, j = 1, . . . , n|X(t0) = x0, Y (t0) = 0},

(3)

where tj = t0+j∆t , j = 1, . . . , n, and∆t = (T−t0)/n.With the as-
sumptions made, the right-hand side of this equation can be made
to approximate the reliability as closely as desired by appropriately
choosing ∆t , or, equivalently, n. Within the adopted approxima-
tion, it is realized that the reliability can nowbe expressed in terms
of the joint conditional PDF fX(t1)...X(tn)|X(t0),Y (t0)(·, . . . , ·|x0, 0) as
follows, which is just a rephrasing of Eq. (3),

R(T |x0, 0, t0) ≈

∫ xc

xl
· · ·

∫ xc

xl
f(···)(x1, . . . , xn|x0, 0)dx1 · · · dxn. (4)

Due to the Markov property of the state space vector process
Z(t) = (X(t), Y (t))T , we may express the joint PDF of Z(t1), . . . ,
Z(tn) in terms of the transition probability density function

p(z, t|z ′, t ′) = fZ(t)|Z(t ′)(z|z ′)

= fZ(t)Z(t ′)(z, z ′)/fZ(t ′)(z ′), (fZ(t ′)(z ′) ≠ 0) (5)

in the following way

fZ(t1)...Z(tn)|Z(t0)(z1, . . . , zn|z0) =

n∏
j=1

p(zj, tj|zj−1, tj−1). (6)

This leads to the expression (z0 = (x0, 0)T , dzj = dxjdyj, j =

1, . . . , n)

R(T |x0, 0, t0)

≈

∫
∞

−∞

∫ xc

xl
· · ·

∫
∞

−∞

∫ xc

xl

n∏
j=1

p(zj, tj|zj−1, tj−1)dz1 · · · dzn, (7)

which is the path integration formulation of the reliability prob-
lem. The numerical calculation of the reliability is done iteratively
in an entirely analogous way as in standard path integration. To
show that, let us introduce a reliability density function (RDF)
q(z, t|z0, t0) as follows,

q(z2, t2|z0, t0) =

∫
∞

−∞

∫ xc

xl
p(z2, t2|z1, t1) p(z1, t1|z0, t0)dz1, (8)

and (n > 2)

q(zk, tk|z0, t0) =

∫
∞

−∞

∫ xc

xl
p(zk, tk|zk−1, tk−1)

× q(zk−1, tk−1|z0, t0)dzk−1, k = 3, . . . , n. (9)
The reliability is then finally calculated approximately as (T = tn)

R(T |x0, 0, t0) ≈

∫
∞

−∞

∫ xc

xl
q(zn, tn|z0, t0)dzn. (10)

The complementary probability distribution of the time to
failure Te, i.e. the first passage time, is given by the reliability
function. The mean time to failure ⟨ Te ⟩ can thus be calculated by
the equation

⟨Te⟩ =

∫
∞

0
R(τ |x0, 0, t0)dτ . (11)

To evaluate the reliability function it is required to know
the transition probability density function p(z, t|z ′, t ′), which is
unknown for the considered nonlinear systems. However, from
Eq. (1) it is seen that for small t − t ′ it can be determined approxi-
mately,which iswhat is needed for the numerical calculation of the
reliability. A detailed discussion of this, and the iterative integra-
tions of Eqs. (8) and (9), is given in [13,17]. Concerning the integra-
tions, there is, however, one small difference between the present
formulation and that described in these references. In Eqs. (8) and
(9), the integration in the x-variable only extends over the interval
(xl, xc). The infinite upper and lower limits on the y-variable are
replaced by suitable constants determined by e.g. an initial Monte
Carlo simulation.

If the system response Z(t) has a stationary response PDF
fZ (z) as t → ∞, it follows that the conditional response PDF
f{Z(tn)|Z(0), xl<X(tj)<xc ; 0≤j≤n−1}(z) also reaches a stationary density,
say q∗(z), when tn → ∞. This means that the reliability pro-
cess eventually becomes memoryless, and hence the RDF con-
verges q(z, tn|z0, t0) → q∗(z)Ke−νtn for some constants K and ν
as tn → ∞. Also the numerical method should reach stationarity
in the conditional density. This also implies that the numerically
estimated reliability function must be exponential, since the same
relative amount of probability mass leaves the system at every it-
eration. So in the end, the only thing one should need for a good
reliability estimate is the behavior in the transient phase, and the
exponential decay thereafter.

3. Numerical examples

3.1. First order system under multiplicative and additive noises

Consider the first order stochastic system, subjected to mul-
tiplicative and additive uncorrelated, zero mean Gaussian white
noises:

Ẋ = −a X + X χ(t) + ξ(t), 0 ≤ t ≤ tf , (12)

where E[ ξ(t) ξ(t+τ) ] = Dξ δ(τ ) and E[ χ(t) χ(t+τ) ] = Dχδ(τ ).
Interpreting Eq. (12) as a limiting case of broadband noise pro-
cesses, then it must be interpreted as an SDE in the Stratonovich
sense. Since PI assumes an interpretation in the Ito sense, the
equation has to be rewritten as an SDE in the following form
(0 ≤ t ≤ tf ),

dX = −


a −

Dχ

2


Xdt + X


DχdB1(t) +


DξdB2(t), (13)

where B1(t) and B2(t) are two independent standard Brownian
motion processes.

The stability condition for the n-th order moment can be
written as follows, assuming ⟨Xn

⟩ = Dn:

Ḋn = −anDn +
n2Dn

2
Dχ +

n(n − 1)Dn−2

2
Dξ ,

H⇒ Dn =
(n − 1)Dn−2Dξ

2a − nDχ

, D0 = 1.
(14)
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Fig. 1. One-sided reliability function of system (12) for different values of Dχ and
a = 1.

Note, that the system (12) has the following stability property,
namely, it is possible to select such a value of multiplicative noise
intensity, so that the system will be stable with respect to the
second order moment (σ 2

= D2), and unstable for higher order
moments (Dn, n > 2). Following this logic, one can derive the
following stability condition for the n-th order moment:

Dχ <
2a
n

. (15)

Fig. 1 presents the numerically calculated reliability function for
critical level xc = 3.5σ for three different cases: (1) Dχ = 1.0
and a = 1.5 (stable in D2, unstable in D4); (2) Dχ = 8/15 and
a = 1 + 4/15 (stable in D4, unstable in D6); (3) Dχ = 12/35 and
a = 1 + 6/35 (stable in D6, unstable in D8). The expected time to
failure has been calculated using Eq. (11):

⟨Te⟩ = 26.9 s for Dχ = 1, Dξ = 1
⟨Te⟩ = 31.7 s for Dχ = 8/15, Dξ = 22/15
⟨Te⟩ = 46.0 s for Dχ = 12/35, Dξ = 58/35.

The values of Dχ and Dξ have been chosen so that D2 = 1.0, that
is, the standard deviation of the response is the same for all three
examples. It can be seen from these numbers that higher order
moment instability may significantly influence the system’s reli-
ability. Namely, the first passage time for the systemwith unstable
4th ordermoment is significantly smaller than that for the systems
with unstable 6th order moments.

3.2. Second order system under multiplicative and additive noise

The focus is on the following linear oscillator under both
additive and multiplicative random excitations:

Ẍ + ω0[2ζ + W2(t)]Ẋ + ω2
0[1 + W1(t)]X = W3(t), (16)

where Wj(t), j = 1, 2, 3, are wide band stationary processes
with zero mean values. This model was studied by Ariaratnam and
Tam [16] under the assumption that ζ is of order ϵ and the Wj(t)
are of order

√
ϵ, where ϵ is a small parameter. By applying the

stochastic averaging procedure, it was argued that the amplitude
process A(t) =


X2

+ Ẋ2/ω2
0

1/2
is approximately a Markov diffu-

sion process governed by the (Itô) stochastic differential equation
(SDE)

dA = m(A)dt + σ(A)dB(t). (17)
The drift coefficient m(A) and the diffusion coefficient σ(A) are
given by the equations,

m(A) = −αA +
δ

2A
, (18)

σ(A) = (γ A2
+ δ)1/2, (19)

in which

α = ζω0 −
πω2

0

8


2Φ22(0) + 3Φ22(2ω0)

+ 3Φ11(2ω0) − 6Ψ12(2ω0)

, (20)

δ =
π

ω2
0
Φ33(ω0), (21)

γ =
πω2

0

4


2Φ22(0) + Φ22(2ω0) + Φ11(2ω0) + 2Ψ12(2ω0)


, (22)

and

Φij(ω) =
1
2π

∫
∞

−∞

E[Wi(t)Wj(t + τ)] cos(ωτ)dτ ,

i, j = 1, 2, 3, (23)

Ψij(ω) =
1
2π

∫
∞

−∞

E[Wi(t)Wj(t + τ)] sin(ωτ)dτ ,

i, j = 1, 2, 3. (24)

Ariaratnam and Tam [16] showed that the expected time ⟨Tf ⟩ to
first failure of the amplitude process A(t) is given by the formulas

⟨Tf ⟩ =
1

ηγ

∫ ac

a0

1
u


1 +

γ

δ
u2

η

− 1

du, η =

α

γ
+

1
2

≠ 0

(25)

⟨Tf ⟩ =
1
γ

∫ ac

a0

1
u
ln


1 +

γ

δ
u2


du, η = 0. (26)

Here a0 denotes the initial condition and ac the critical level (a0 <

ac). This approach would usually represent an approximation in
the sense that failure for the original problem would typically be
whenX(t) exceeds a critical region bounded by the thresholds±xc .
An approximate solution for this is obtained by studying the ex-
ceedance of ac = xc by the amplitude process A(t).

For the numerical calculations in this paper the Wj(t) are as-
sumed to be independent Gaussian white noise processes, with
E[Wj(t)Wj(t + τ)] = σ 2

j δ(τ ). Using numerical PI we have calcu-
lated the reliability function associated with the linear oscillator
model in Eq. (16) for three case studies with different values of the
ω0 parameter. Since PI calculations can be done for any choice of
parameter values, it provides a means of studying the limitations
of the amplitude diffusion model adopted in [16], and thereby also
the limitations of stochastic averaging in this context.

To provide a means for verification of the PI results, we have
calculated the stationary part of the reliability function by the
ACER method [18]. This method makes it possible to estimate
the exact extreme value distribution, and hence the reliability
function, of the response process provided the transient response
can be neglected. From Eq. (10) and the following discussion, it is
obtained that the tail behavior of the reliability function is given as,

R(t) = R(t0) exp{−ν(xc)(t − t0)}, t ≥ t0, (27)

for a suitable t0. The ACER method provides an estimate and a 95%
confidence interval of the parameter ν(xc) for each critical level xc .
An approximate mean time to failure is then given by 1/ν(xc).
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Table 1
Mean time to failure for ω0 = 0.1, ζ = 0.01.

xc/σX ⟨TSA⟩ (s) ⟨TPI ⟩ (s) νPI νACER 95% CI

2.5 1.67 · 106 5.90 · 103 1.88 · 10−4 2.08 · 10−4 (1.81 · 10−4, 2.36 · 10−4)

3.0 4.22 · 106 1.58 · 104 6.64 · 10−5 7.56 · 10−5 (5.64 · 10−5, 9.48 · 10−5)

3.5 1.20 · 107 4.87 · 104 2.10 · 10−5 2.21 · 10−5 (1.32 · 10−5, 3.09 · 10−5)
Fig. 2. Two-sided reliability function of system (16). —–: xc/σX = 2.5, – – –:
xc/σX = 3.0, – · –: xc/σX = 3.5.

3.2.1. Case 1
In this case the system’s parameters are ω0 = 0.1, ζ = 0.01,

and σ1 = σ2 = σ3 = 0.1. The standard deviation of the response
was found to be σX = 16.271, while σẊ = 1.628. The reliability
functions calculated by the numerical PI method for three differ-
ent critical levels are shown in Fig. 2. Some numerical results are
summarized in Table 1. It is seen that themean time to failure ⟨TPI⟩
calculated by PI agrees with the approximate time to failure pro-
vided by 1/ν(xc) for all three critical levels, while the correspond-
ing failure times ⟨TSA⟩ obtained by stochastic averaging are orders
of magnitude wrong. This seems to be caused by a large value of
the parameter η, cf. Eq. (25), which assumes the value 19.5 for
this case.

3.2.2. Case 2
In this case the system’s parameters are ω0 = 1.0, ζ = 0.05,

and σ1 = σ2 = σ3 = 0.1. The standard deviation of the response
was found to be σX = 1.832, while σẊ = 1.836. The reliability
functions calculated by the numerical PI method for three differ-
ent critical levels are shown in Fig. 3. Numerical results are sum-
marized in Table 2. Again it is seen that the mean time to failure
calculated by PI agrees with the approximate time to failure
provided by 1/ν(xc) for all three critical levels, while the cor-
responding failure times obtained by stochastic averaging are
approximately two orders of magnitude wrong. In this case η =

9.5, which is still quite large.

3.2.3. Case 3
In this case the system’s parameters are ω0 = 10.0, ζ = 0.15,

and σ1 = σ2 = σ3 = 0.1. The standard deviation of the response
was found to be σX = 0.0410, while σẊ = 0.4261. The reliability
functions calculated by the numerical PI method for three differ-
ent critical levels are shown in Fig. 4. Numerical results are sum-
marized in Table 3. Also in this case it is seen that the mean time
to failure calculated by PI agrees with the approximate time to fail-
ure provided by 1/ν(xc) for all three critical levels, while the cor-
responding failure times obtained by stochastic averaging are now
more on the same level as the correct values. In this case η = 2.5.
Fig. 3. Two-sided reliability function of system (16). —–: xc/σX = 2.5, – – –:
xc/σX = 3.0, – · –: xc/σX = 3.5.

Fig. 4. Two-sided reliability function of system (16). —–: xc/σX = 2.5, – – –:
xc/σX = 3.0, – · –: xc/σX = 3.5.

4. Conclusions

In the paper the authors have considered a first passage type
reliability problem for two types of systems: first order and second
order systems with parametric and additive white noises. The
numerical results presented in the paper are obtained by the path
integration method, which was reformulated from its standard
form to handle reliability problems. The results were verified by
Monte-Carlo simulations through the use of the ACER method.

For the first order system the numerical results have demon-
strated that the higher ordermoments instabilitymay significantly
influence the system’s reliability. It has beendemonstrated that the
first passage time for the system with unstable 4th order moment
is half as large as that with an unstable 6th order moment.

For the second order system it has been shown that the use of
stochastic averaging has its limitations especially for calculating
the reliability. The results calculated by numerical PI were verified
by using Monte-Carlo simulations in combination with the ACER
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Table 2
Mean time to failure for ω0 = 1.0, ζ = 0.05.

xc/σX ⟨TSA⟩ (s) ⟨TPI ⟩ (s) νPI νACER 95% CI

2.5 7.45 · 103 1.66 · 102 6.54 · 10−3 6.15 · 10−3 (5.83 · 10−3, 6.48 · 10−3)

3.0 1.69 · 104 4.26 · 102 2.45 · 10−3 2.37 · 10−3 (2.19 · 10−3, 2.54 · 10−3)

3.5 4.03 · 104 1.17 · 103 8.68 · 10−4 7.98 · 10−4 (7.31 · 10−4, 8.65 · 10−4)
Table 3
Mean time to failure for ω0 = 10.0, ζ = 0.15.

xc/σX ⟨TSA⟩ (s) ⟨TPI ⟩ (s) νPI νACER 95% CI

2.5 16.8 8.54 1.25 · 10−1 1.16 · 10−1 (1.09 · 10−1, 1.24 · 10−1)

3.0 29.4 16.9 6.16 · 10−2 5.85 · 10−2 (5.33 · 10−2, 6.36 · 10−2)

3.5 48.9 31.9 3.21 · 10−2 2.89 · 10−2 (2.50 · 10−2, 3.28 · 10−2)
method, which allows the estimation of the exact extreme value
distribution for the stationary part of the response process. This
provides a means of determining an approximate value of the
mean time to failure. In all the case studies investigated there was
agreement between the results calculated by PI and estimated by
the ACER method.
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