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Abstract 

This study investigates several important considerations to be made when optimising the structural aspects of a 

single-degree-of-freedom (SDOF) electromagnetic vibration energy harvester. Using the critically damped stress 

method, the damping and power output of the harvester were modelled and verified, displaying an excellent 

agreement with the experimental results. The SDOF harvester was structurally optimised under a certain set of 

constraints and it was found that under the fixed beam’s thickness condition, the harvester displayed an 

insignificant increase in power output as a function of volume when the device’s size was relatively larger. This 

highlights the importance of considering a smaller practical volume for this case. Additionally, when optimising 

the device using a low stress constraint and a low damping material, it was observed that considering the load 

resistance as an input parameter to the objective function would lead to a higher power output compared to the 

optimum load resistance condition. Further analysis indicated that there exists a power limit when the 

electromagnetic coupling coefficient approaches infinity. For the case of a high electromagnetic coupling 

coefficient value and a small volume constraint, it is possible to achieve approximately 80.0% of the harvester’s 

power limit. Finally, it was demonstrated that a high power output can be achieved for a SDOF electromagnetic 

harvester by considering a high-density proof mass centred at the free end of the beam. 

Keywords: Electromagnetic energy harvesting; Damping; Structural optimisation; SDOF; Power  

1. Introduction 

Energy harvesting from ambient vibrations have continued receiving the interest of many 

researchers over the past two decades. The idea of providing a green and sustainable source of energy 

to power low-consumption electronics is attractive as it allows small devices such as a wireless sensor 

node to operate in remote areas where the use of conventional batteries may be inconvenient. 

Additionally, it is also cheaper to use such a device for long term applications [1–3]. However, over 

the past decade, energy harvesting has also been extended for large-scale applications [4–6]. Among 

the available ambient sources for energy harvesting, mechanical vibrations have emerged as one of the 

most promising option. While vibration energy harvesting provides an excellent alternative to replace 

batteries, there are still two main concerns in this field. The first concern is that the output power of a 

vibration energy harvester is strongly reliant on its vibration input source. However, ambient 

vibrations are generally low in frequency and magnitude, which may limit the performance of the 

harvester. Secondly, a vibration energy harvester has a limited frequency bandwidth. Generally, the 

harvester would only produce useful power output when its resonant frequency matches the frequency 

of the ambient vibration source. If the frequency of the vibration source deviates slightly, the power 

output would drop significantly. In some practical applications, the frequency of the vibration source 

is not constant and can fluctuate. Thus, the research in the optimisation of vibration energy harvesters 

has become vastly popular, with the aim to produce a high-efficiency output harvester.  

Despite being a main issue, it is actually difficult to optimise the frequency bandwidth of a 

harvester as the definition of an ‘optimum’ frequency bandwidth is vague and maximising the 

bandwidth would generally take a large toll on the power output. Hence, most studies would focus on 

methods to improve the frequency bandwidth instead of optimising it [7–9]. In contrast, many studies 

have been conducted to optimise the power output of a vibration energy harvester. The most common 
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example of power output optimisation in vibration energy harvesting applications is the determination 

of the optimum load resistance that corresponds to the maximum power output of the harvester, which 

have been reported in many published works [10–13], among others. Generally, optimisation of a 

vibration energy harvester can be divided into two streams. The first stream is the structural side, 

which represents the non-electrical components of the harvester. Optimisation in this aspect usually 

involves physical changes to the structure such as its shape or its dimensions. The second optimisation 

stream depends on the electrical conversion method of the harvester and is focused on optimisation of 

the electrical parameters of the harvester. For electromagnetic harvesters, the optimisation can either 

focus on the electromagnetic side, the structural components or both. 

Typically, optimisation performed on the electromagnetic aspect considers maximising the 

electromagnetic coupling between the coil and the magnets by either increasing the magnetic flux 

density [14,15], optimising the coil layout [16] or simultaneously optimising both the coil and the 

magnet components [17]. Beeby et al. [18] optimised the magnet dimension of a cantilevered 

electromagnetic harvester using a finite element approach. The optimised magnet dimensions resulted 

in 2.6 times increase in voltage output as compared to the original magnets. Tang et al. [19] optimised 

a tubular electromagnetic harvester by considering a double layer configuration using a combination of 

radial and axial magnets, which increased the power output of their original design by 280%. On the 

structural side, Kapanen [20] noted that the most important factor to consider when optimising a 

single-degree-of-freedom (SDOF) electromagnetic harvester under a constrained volume is to 

maximise the mass of the vibrating object, since the power output of the harvester is proportional to 

the mass squared. Chiu et al. [21] performed an analytical optimisation of a two-degree-of-freedom 

electromagnetic harvester by considering eight design parameters, which included both the 

electromagnetic and the structural parameters. On the other hand, Joubaneh and Barry [22] took a 

slightly different approach where they attempted to optimise the structural and electromagnetic aspect 

of an electromagnetic resonant shunt tuned mass damper-inerter, which acts as both an energy 

harvester and a vibration suppressor. In this case, it was important to consider the trade-off between 

the two conflicting functions and find a configuration that would maximise both performances. Other 

authors have also presented methods to improve the structural performance of an electromagnetic 

harvester [23–26]. However, these studies were dedicated to the enhancements instead of a real 

structural optimisation. In other words, studies that focuses on a real structural optimisation of 

electromagnetic harvesters are quite rare. 

In this paper, several important considerations were investigated and highlighted regarding the 

optimisation on the structural aspect of a SDOF electromagnetic vibration energy harvester. The 

mathematical model for the harvester was first derived using the Euler-Bernoulli beam theory and the 

critically damped stress method and verified experimentally. A structural optimisation was then 

performed for the SDOF harvester under several different constraints. The first consideration 

addressed in this paper is whether a larger practical volume constraint will generally lead to a higher 

power output when optimised. Secondly, the conditions at which two different load resistance 

constraints should be considered in the optimisation process to maximise the resulting power output 

was analysed. After that, the expression for the power limit of a SDOF electromagnetic harvester was 

derived and the portion of the power limit that was considered to be practically achievable was 

determined. Finally, the ideal proof mass geometry to maximise the power output the harvester was 

obtained and based on this ideal output, some practical considerations regarding the geometry and 

placement of the proof mass were highlighted. 

2. Governing equations for SDOF cantilever-based electromagnetic vibration energy harvester 

Consider a typical SDOF cantilever-based electromagnetic vibration energy harvester design as 

seen in Fig. 1.  
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Fig. 1. Design (left) and schematic (right) of a cantilevered electromagnetic vibration energy harvester. 

The design consists of a rectangular cantilever beam clamped at one end whereas a conducting coil 

was fixed to its other end. The variables 𝐸, 𝜌, 𝐿, ℎ, and 𝑤 defines the cantilever beam’s Young’s 

modulus, density, length, thickness and width. The 𝑥 variable represents the position along the beam’s 

length. The coil has an inertial resistance 𝑅𝑐  and is connected in series to a load resistor, 𝑅𝐿 . The 

clamped end of the beam and the magnets are fixed onto a base that is vibrating with an acceleration 

amplitude of 𝐺. 

2.1 Voltage and power equations 

Based on Faraday’s law of electromagnetic induction, the root-mean-squared (RMS) voltage 

induced in the load resistance, 𝑉𝑟𝑚𝑠, as the coil vibrates through the magnetic field of the magnets is 

𝑉𝑟𝑚𝑠 =
𝐾

√2
𝑣𝑐

𝑅𝐿

𝑅𝐿+𝑅𝑐
 (1) 

𝐾 = 𝑁𝐵𝑙𝑓 (2) 

where 𝑁, 𝑙 and 𝑓 is the number of turns, effective length and fill factor of the coil, 𝐵 is the average 

magnetic flux density of the magnets and 𝑣𝑐 is the vibrating velocity of the coil. According to Ohm’s 

electrical law, the average power output at the load resistance, 𝑃𝑎𝑣𝑒 , is 

𝑃𝑎𝑣𝑒 =
𝑉𝑟𝑚𝑠

2

𝑅𝐿
 (3) 

It is worth noting that in Eqs. (1) and (2), if the properties of the electromagnetic components are 

fixed, the power output of the harvester would solely depend on the velocity of the coil. 

2.2 Equation of motion of the cantilever under a harmonic base excitation 

The dynamics of the SDOF harvester in Fig. 1 can be modelled as a cantilever beam with a proof 

mass attached on its free end. Assuming a constant, harmonic base acceleration input and applying the 

Euler-Bernoulli beam theory, the absolute amplitude of a vibrating cantilever beam at position 𝑥 and 

time 𝑡 can generally be expressed as [27] 

𝑧𝑎(𝑥, 𝑡) = 𝑧(𝑥, 𝑡) +  
𝐺

𝜔2 ei𝜔𝑡 (4) 

where 𝑧(𝑥, 𝑡) is the vertical displacement of the cantilever beam relative to the vibrating base, 𝐺 is the 

acceleration of the harmonic base excitation input and 𝜔  is the driving frequency. Applying the 

Fourier method, 𝑧(𝑥, 𝑡) can be separated in terms of its spatial and time components. 

𝑧(𝑥, 𝑡) = ∑ 𝜑𝑛(𝑥)𝜂𝑛(𝑡)∞
𝑛=1  (5) 

where 𝜑𝑛  is the mass normalized eigenfunction of the beam and 𝜂𝑛  is the response function. The 

subscript 𝑛 in Eq. (5) corresponds to the vibration mode of the beam. However, for a SDOF harvester, 
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only the first mode (𝑛 = 1) is normally considered as the response at this mode is significantly larger 

than that of the higher modes. Considering the case of the first mode resonance, the beam 

eigenfunction and response function can be written as 

𝜑1(𝑥) =  𝐶1 [cosh
𝜆1

𝐿
𝑥 − cos

𝜆1

𝐿
𝑥 − 𝐽1 (sinh

𝜆1

𝐿
𝑥 − sin

𝜆1

𝐿
𝑥)] (6) 

𝜂1(𝑡) =
𝐺ei𝜔𝑡𝐹1

𝜔1
2−𝜔2+i2𝜁1𝜔1𝜔

 (7) 

𝐹1(𝑡) =
𝑚𝑏

𝐿
∫ 𝜑1(𝑥)d𝑥

𝐿

0
+ 𝑚𝑡𝜑1(𝐿) + 𝑀𝑆

d𝜑1

d𝑥
(𝐿) (8) 

where 𝜁1 is the first mode damping of the beam, 𝜔1 is the first mode natural frequency of the beam, 𝐹1 

is the forcing function, 𝑚𝑏  and 𝑚𝑡  are the mass of the beam and the proof mass, 𝑀𝑆  is the static 

moment at 𝑥  = 𝐿  and 𝐶1 , 𝜆1  and 𝐽1  are constant terms derived from the boundary conditions and 

inertial terms of the cantilever beam and coil [28]. Substituting Eqs. (6), (7) and (8) into equation (5) 

and differentiating it with respect of time 𝑡 results in an expression describing the transverse velocity 

of the beam under first mode vibration. 

𝑣(𝑥, 𝑡) =
𝜔

𝜔1
2−𝜔2+i2𝜁1𝜔1𝜔

𝐺ei𝜔𝑡𝐹1𝜑1(𝑥) (9) 

Eq. (9) is only valid for 0 ≤ 𝑥 ≤ 𝐿, however, the velocity of the attached coil is usually measured 

at the centre of the coil, which is located at 𝑥 > 𝐿 . In this case, the velocity of the coil can be 

estimated as 

𝑣𝑐(𝑡) =
𝜔

𝜔1
2−𝜔2+i2𝜁1𝜔1𝜔

𝐺ei𝜔𝑡𝐹1[𝜑1(𝐿) + 𝑥𝑐𝜑1′(𝐿)] (10) 

where 𝑥𝑐 is the distance from the centre of the coil to 𝑥 = 𝐿 and 𝜑1′(𝐿) is the derivative of the beam’s 

eigenfunction with respect to 𝑥 at 𝑥 = 𝐿. It is important to mention that the damping ratio of the 

harvester, 𝜁1  equals to the sum of the mechanical damping of the beam and the electromagnetic 

damping from the coil and magnets.  

𝜁1 = 𝜁𝑐 + 𝜁𝑒 (11) 

While the electromagnetic damping ratio, 𝜁𝑒, for the first mode vibration can be approximated by 

Eq. (12), there is no analytical function established to describe the mechanical damping ratio, 𝜁𝑐, of 

cantilever beams. Note that 𝑑𝑒 and 𝑚𝑒 in Eq. (12) refers to the electromagnetic damping constant and 

the effective mass of the beam respectively. 

𝜁𝑒 =
𝑑𝑒

2𝑚𝑒𝜔1
=

𝐾2

2𝑚𝑒𝜔1(𝑅𝐿+𝑅𝑐)
 (12) 

3. Evaluation of mechanical damping ratio and fatigue limit stress approximation  

For macro-size cantilever beams (volume > 100 mm3), the mechanical damping ratio can be 

divided into its thermoelastic damping, 𝜁ℎ, and its material damping 𝜁𝑚 as shown in Eq. (13).  Other 

forms of damping can be assumed negligible for this size range [29]. 

𝜁𝑐 = 𝜁ℎ + 𝜁𝑚 (13) 

 Zener [30] and Lifshitz and Roukes [31] proposed different equations to define the thermoelastic 

damping ratio of the cantilever beams. Nevertheless, the results from both equations are very similar. 

In this study, Zener’s equation was used since it is not bounded by the hyperbolic functions, making it 

easier to compute for larger frequency values. Equations (14) and (15) describes Zener’s thermoelastic 

damping ratio equation 

𝜁ℎ =
𝐸𝛼2𝑇0

2𝜌𝐶𝑝

𝜔𝜏

1+(𝜔𝜏)2 (14) 
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𝜏 =
ℎ2𝜌𝐶𝑝

𝜋2𝑘
 (15) 

where 𝛼, 𝐶𝑝 and 𝑘 corresponds to the thermal expansion coefficient, specific heat capacity and thermal 

conductivity of the beam material and 𝑇0  is the ambient temperature. In this study, the material 

damping ratio for the cantilever beam was evaluated using the critically damped stress method 

proposed by Foong et al. [29]. The method defines a strong relation between the 𝜁𝑚 and 𝜎𝑐, where 𝜎𝑐 

is defined as twice the maximum dynamic stress of the beam when vibrated under critically damped 

condition (𝜁1 = 1). Based on the Euler-Bernoulli beam theory, 𝜎𝑐 can be expressed as 

𝜎𝑐 = 𝐸ℎ𝑌 (
𝜆1

𝐿
)

2
𝐶1𝐹1 (16) 

Fig. 2 describes the damping stress relation between the 𝜁𝑚  and 𝜎𝑐  for four different materials 

obtained by duplicating the experimental procedures outlined in Foong et al [29].  

  

Fig. 2. Damping stress relation for aluminium, stainless steel, glass fibre and PVC materials. 

All cantilever beams used in the experiment were chosen to meet the criteria of a Euler-Bernoulli 

beam for first mode vibrations, as described by Labuschagne et al. [32] and Zamiralova and 

Lodewijks [33], represented in Eqs. (17) and (18). 

𝐿

ℎ
≥ 10 (17) 

𝑤2𝑀

𝐸𝐼ℎ
≤ 1 (18) 

where 𝑀 is the maximum bending moment of the vibrating beam. A best fit curve was fitted to the 

experimental data of each material. The equations for the best fit curves can be described in the form 

of 

𝜁𝑚 = 𝑎𝜎𝑐
𝑏 + 𝑐 (19) 

where the constants of 𝑎, 𝑏 and 𝑐 are tabulated in Table 1. 

Table 1: Damping stress parameters for four different materials. 

Material 𝑎 (Pa-b) 𝑏 𝑐 (× 10-3) 

Aluminium 1050A 1.527 × 10-8 0.9114 1.828 

PVC 7.116 × 10-6 0.5345 8.068 

Stainless Steel 304 2.109 × 10-8 0.8447 1.662 

Glass Fibre 10G/40 3.567 × 10-9 1.0000 2.001 
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Using Eq. (19) and the constants tabulated in Table 1, it is possible to estimate the material 

damping ratio of the four different cantilever beams under different conditions. In addition, Thein et al. 

has shown that the material damping evaluation method here is also applicable for different cantilever-

like structures [34]. Based on the dispersion of the experimental data in Fig. 2, one can expect an error 

margin of up to 10.0% in damping predictions, especially at lower damping values. 

Normally, the maximum dynamic stress of the harvester under an operational condition should not 

exceed its fatigue stress limit, 𝜎𝑓, to assure a long lifespan. Lazan [35] reported that for most materials, 

the relation between a structure’s damping energy, 𝐷, and its maximum vibrating stress, 𝜎𝑚𝑎𝑥, can be 

defined by a two segment curve fit, with one curve defining the relation for when 𝜎𝑚𝑎𝑥 ≤ 0.8𝜎𝑓 and 

the other curve for when 𝜎𝑚𝑎𝑥 ≥ 0.8𝜎𝑓. Both curves can be generalised in the form of  

𝐷 = 𝐽𝜎𝑚𝑎𝑥
𝑚 (20) 

where 𝐽 and 𝑚 are constants. Assuming a narrow elliptical hysteretic damping model, 𝜎𝑚𝑎𝑥 and 𝐷 can 

be approximated by 

𝜎𝑚𝑎𝑥 =
𝜎𝑐

2𝜁𝑚
 (21) 

𝐷 =
𝜋

𝐸
𝜎𝑐𝜎𝑚𝑎𝑥 (22) 

Considering a two-segment curve fit for the relation between 𝐷 and 𝜎𝑚𝑎𝑥 , 𝜎𝑓  was estimated by 

determining the intersection point between the two fitted curves as shown in Fig. 3 for aluminium.  

 

Fig. 3. Estimation of fatigue limit stress for aluminium cantilever beam. 

The same method was applied for stainless steel and glass fibre. For PVC however, the fatigue 

limit stress was approximated from literature [36] as a two-segment curve fit was not compatible with 

the experimental data. The data for PVC was determined to adopt a single-segment curve fit instead. 

The result of the estimated 𝜎𝑓 value for each material is tabulated in Table 2. 

4. Optimum load resistance 

Many past publications have reported the existence of an optimum load resistance value for 

vibration energy harvesters that results in the harvester’s maximum power output. This optimum 

resistance value can be derived by expanding Eq. (3). Substituting Eqs. (1), (2) and (10) into (3) and 

considering that maximum power occurs at resonance (𝜔 = 𝜔1) results in  

𝑃𝑎𝑣𝑒 =
1

𝑅𝐿
{

𝐾

√2

1

2(𝜁𝑐+𝜁𝑒)𝜔1
𝐺𝐹1[𝜑1(𝐿) + 𝑥𝑐𝜑1′(𝐿)]

𝑅𝐿

𝑅𝐿+𝑅𝑐
}

2
 (23) 
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Defining the mechanical damping ratio in terms of its mechanical damping constants where 𝑑𝑐 =
2𝑚𝑒𝜔1𝜁𝑐 and rearranging Eq. (23) results in 

𝑃𝑎𝑣𝑒 = {
1

√2
𝑚𝑒𝐺𝐹1[𝜑1(𝐿) + 𝑥𝑐𝜑1′(𝐿)]}

2 𝐾2𝑅𝐿

[𝑑𝑐(𝑅𝐿+𝑅𝑐)+𝐾2]2 (24) 

Differentiating Eq. (24) with respect to 𝑅𝐿 and equating it to zero defines the exact condition of 

optimum load resistance, 𝑅𝐿
𝑜𝑝𝑡

: 

𝑅𝐿
𝑜𝑝𝑡

=
𝐾2

𝑑𝑐
+ 𝑅𝑐 (25) 

The two most common conditions of the optimum load resistance reported in literatures are 𝑅𝐿
𝑜𝑝𝑡

=

𝑅𝑐 and 𝑅𝐿
𝑜𝑝𝑡

=
𝐾2

𝑑𝑐
− 𝑅𝑐. The second condition is more commonly recognised as when 𝜁𝑒 = 𝜁𝑚.  Based 

on Eq. (25), it can be devised that the first condition can only be achieved when 
𝐾2

𝑑𝑐
≪ 𝑅𝑐 and the 

second condition is valid when 
𝐾2

𝑑𝑐
≫ 𝑅𝑐, which is similar to what has been previously reported [37]. 

Nevertheless, if Eq. (25) is substituted into Eq. (11), it can be shown that under the 𝑅𝐿
𝑜𝑝𝑡

 condition, the 

electromagnetic damping will always be lower or equal to the mechanical damping. 

5. Verification of the mathematical model for the SDOF design 

An experiment was conducted to verify the validity of the developed analytical equations, 

especially in terms of the damping evaluation. A simple SDOF harvester was created by attaching a 

coil component to the free end of the cantilever beam using M4 bolts and nuts. A cuboid shaped proof 

mass was also bonded to the beam using adhesive and positioned just behind the coil as seen in Fig. 4.  

10.0 mm

L

Coil

Cantilever 

beam

Proof 

mass

Vibrating 

base

Lmass

hmass

h
w

wmass

x

 

Fig. 4. Dimension considerations for a SDOF cantilever-based electromagnetic vibration energy harvester. 

where 𝐿𝑚𝑎𝑠𝑠, 𝑤𝑚𝑎𝑠𝑠 and ℎ𝑚𝑎𝑠𝑠 are the length, thickness and width of the proof mass. The other end of 

the beam was clamped onto an analogue shaker to induce a harmonic base excitation vibration. 

Similarly, two pairs of neodymium magnets were also clamped onto the shaker and positioned around 

the coil. The same magnets and coil components were used throughout the experiment. The air space 

between the permanent magnets have a 𝐵 value of 0.26 T and the properties of the coil are 𝑁 = 250, 𝑙 

= 44.0 mm, 𝑓 = 0.65 and 𝑅𝑐 = 5.4 Ω. When mounted onto the free end of the beam, the coil covers 

part of the beam by a length of 10.0 mm. The actual experiment setup is shown in Fig. 5. Two laser 

displacement sensors were used to capture the output response of the vibrating base and the harvester 

at point P as labelled in Fig. 5, which is located at approximately 𝑥 = 𝐿  + 𝐿𝑚𝑎𝑠𝑠 + 5.0 mm. These 

sensors are connected to a data acquisition (DAQ) card to transfer the acquired data to a computer. 

The coil was connected in series to a load resistor and wired into the DAQ device. The DAQ process 

was initiated using LabVIEW. In the experiment, the optimum load resistance of the harvester was not 

determined experimentally but was calculated using Eq. (25) for simplicity. 
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Fig. 5. Actual experimental setup to verify the mathematical model for the SDOF harvester. 

The experiment was conducted for all four cantilever beams presented in Table 2. The dimensions 

and mechanical properties of each harvester are tabulated in Table 2, in where 𝜌𝑚𝑎𝑠𝑠 refers to the 

density of the added proof mass. The mechanical properties of the materials were measured 

experimentally, whereas the thermal properties were obtained from the supplier’s website [38]. The 

calculated first mode natural frequency, 𝜔1, and optimum load resistance, 𝑅𝐿
𝑜𝑝𝑡

, are also tabulated in 

Table 2. 

Table 2: Mechanical and thermal properties and dimensions of four SDOF harvesters made of different materials. 

Material Aluminium Stainless Steel Glass Fibre PVC 

𝐸 (GPa) 63.0 175.0 22.5 3.1 

𝜎𝑓 (MPa) 86 183 54 12 

𝛼 (× 10-6) 24.0 17.0 11.0 67.0 

𝐶𝑝 (Jkg-1K-1) 900 500 1500 1000 

𝑘 (Wm-1K-1) 222.0 13.8 0.42 0.15 

𝜌 (kgm-3) 2656 8125 1835 1360 

𝐿 (mm) 58.6 34.8 30.1 50.2 

ℎ (mm) 1.20 1.00 1.63 2.38 

𝑤 (mm) 19.8 11.8 12.2 26.3 

𝜌𝑚𝑎𝑠𝑠 (kgm-3) 7600 2700 2700 0 

𝐿𝑚𝑎𝑠𝑠 (mm) 10.0 31.3 39.6 0 

ℎ𝑚𝑎𝑠𝑠(mm) 10.0 14.1 13.2 0 

𝑤𝑚𝑎𝑠𝑠 (mm) 25.0 38.0 38.0 0 

𝜔1 (Hz) 23.0 26.6 19.9 29.4 

𝑅𝐿
𝑜𝑝𝑡

 (Ω) 36.2 29.9 47.7 41.2 

Each harvester was vibrated within a 4.0 Hz frequency range, ensuring that the first mode natural 

frequency lies within the specified frequency range. A base acceleration of 𝐺 = 0.1 g (1 g = 9.81 ms-2) 

was used in the experiments. Initially, the magnet component was removed and the experiments were 

conducted without the magnets to verify the damping stress equations presented in Table 1. Fig. 6 

demonstrates the comparison between the experimental and theoretical absolute amplitude, 𝑧𝑎, of each 

individual harvester at point P (Fig. 5). 
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Fig. 6. Comparison between theoretical and experimental results for the absolute amplitude at position P for 

aluminium, stainless steel, glass fibre and PVC harvesters under zero electromagnetic damping condition. 

Overall, the experimental results demonstrate a good agreement with the theoretical results with an 

average error of less than 2.9% and 4.7% in terms of 𝜔1 and peak 𝑧𝑎 value respectively. This shows 

that the application of the damping stress equation implemented in this study is effective. A slight 

skewness can be observed in the response output for the aluminium and stainless steel harvester, 

which caused a larger discrepancy between their experimental and theoretical values for 𝜔1 . It is 

believed that this is caused by the non-linear stiffening effect due to high amplitude vibrations and 

many repeated tests, which are more prominent in metallic materials [39]. The magnets were then 

clamped onto the shaker and the response of the harvester at point P was re-taken. Additionally, the 

RMS voltage output of the harvester at the load resistance, 𝑉𝑟𝑚𝑠, was also recorded as seen in Fig. 7. 

In the theoretical model, the 𝑉𝑟𝑚𝑠 value was evaluated based on Eq. (1), where 𝑥𝑐 = 𝐿𝑚𝑎𝑠𝑠 + 27.0 mm. 
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Fig. 7. Comparison between theoretical and experimental results for the absolute amplitude at position P and the 

corresponding voltage output for aluminium, stainless steel, glass fibre and PVC harvesters under the optimum 

load resistance condition. 

A good agreement can be observed between experimental results and the theoretical model for the 

aluminium, glass fibre and stainless steel harvester, with an error of less than 8.8% in terms of both 

peak 𝑧𝑎 and peak 𝑉𝑟𝑚𝑠 value. However, the PVC harvester displayed a significantly lower amplitude 

and voltage in the experiment as compared to its theoretical model. This suggests that the PVC 

harvester experienced a higher electromagnetic damping than what was predicted using Eq. (12). The 

reason for this is that in Eq. (2), a single averaged magnetic flux value was used to approximate the 

entire magnetic flux that is in contact with the coil. In reality, the magnetic flux of the permanent 

magnets is not constant and changes in the direction along the height of the magnets. Since the 

amplitude of the PVC beam is much smaller than the other materials, it suggests that the average flux 

value used in the theoretical model would hold for larger amplitude cases or in other words, materials 

with relatively small mechanical damping ratios such as aluminium, stainless steel and glass fibre. 

Consequently, because the PVC material recorded the lowest amplitude and voltage output among all 

other materials, it would be the least practical choice for vibration energy harvesting applications. 

Therefore, this material will be excluded from further analysis. Nevertheless, the damping stress 

equation developed for the PVC harvester is still valid based on the strong agreement observed in Fig. 

6 during the absence of the electromagnetic interaction. The comparison between the experimental and 

theoretical maximum averaged power output for the aluminium, stainless steel and glass fibre 

harvesters are tabulated in Table 3. 

Table 3. Comparison between experimental and theoretical power outputs for three different SDOF harvesters. 

Material Aluminium Stainless Steel Glass Fibre 

Experimental 𝑃𝑎𝑣𝑒 (mW) 6.5 5.0 9.8 

Theoretical 𝑃𝑎𝑣𝑒  (mW) 6.1 5.6 11.5 

From Table 3, the glass fibre harvester has the largest error when compared with the theoretical 

results, raising up to 17.3% in difference. However, since the power is proportional to the velocity 

squared, this difference still lies within the margin of error discussed earlier. Overall, it can be 

concluded that the theoretical model and the damping evaluation methods presented in this paper are 

in good agreement with the experimental results, hence validating the governing equations. 

6. Practical volume and load resistance considerations for a SDOF electromagnetic harvester 

Usually, one would assume that the power output of a harvester is proportional to its volume. This 

generally means that a larger harvester would generate more power. Additionally, one would also 

consider the optimum load resistance condition to maximise the power output of the harvester. 
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However, these claims may not be true under certain conditions. To verify this, a structural 

optimisation was performed on a cantilever-based electromagnetic vibration energy harvester using 

aluminium, stainless steel and glass fibre cantilever beams based on the same harvester design as in 

Fig. 2. A steel cuboid proof mass was considered in the optimisation. The optimisation problem was 

solved using the constrained optimisation function in MATLAB, which applies the interior-point 

algorithm to solve linear and non-linear constrained problems. Table 4 below list down the objective 

function to maximise and the constraints applied in the optimisation. The criteria for Euler-Bernoulli 

beam from Eqs. (17) and (18) were also included in the constraints. As not all beam thickness, ℎ, are 

readily available from suppliers, the optimisation was conducted under cases of constrained and non-

constrained beam thickness. For the first case, the beam thickness was constrained to the values 

presented in Table 2. The same coil and magnets used in the verification were also applied in the 

optimisation problem. 

Table 4: Objective function and constraints applied to the structural optimisation problem for the SDOF harvester. 

Objective function 

Maximise: 

𝑃𝑎𝑣𝑒 = 𝑓(𝐿, ℎ, 𝑤, 𝐿𝑚𝑎𝑠𝑠, 𝑤𝑚𝑎𝑠𝑠, ℎ𝑚𝑎𝑠𝑠) 

Constraints 

8.0 mm < 𝑤 ≤ 27.0 mm 

𝐿 ≥ 10ℎ 

𝜌𝑚𝑎𝑠𝑠 = 7800 kgm-3 

ℎ, 𝐿𝑚𝑎𝑠𝑠, 𝑤𝑚𝑎𝑠𝑠, ℎ𝑚𝑎𝑠𝑠 > 0 

𝑤2𝑀 ≤ 𝐸𝐼ℎ 

𝐺 = 0.1 g  

𝜔1 = 25.0 Hz 

|𝜎𝑚𝑎𝑥| ≤ 0.8𝜎𝑓 

(𝐿 + 𝐿𝑚𝑎𝑠𝑠 + 𝐿𝑚𝑐)𝑤𝑝ℎ𝑝 ≤ 𝑉𝑝
 

The beam width was constrained between 8.0 mm and 27.0 mm based on the selected coil 

component. The first mode natural frequency of the harvester was chosen to be fixed at 25.0 Hz. The 

last row in Table 4 defines a cuboid representation of the practical volume of the harvester, 𝑉𝑝, which 

takes into account the maximum swept volume of the harvester during operation. The said volume is 

inclusive of the magnet component, where 𝐿𝑚𝑐 corresponds to a constant length occupied by the coil 

and the magnets, measuring 65.0 mm.  The variables 𝑤𝑝 and ℎ𝑝 are the width and the swept height of 

the harvester measured at first mode resonance. These variables are determined based on the width and 

height of the beam, coil, magnets and proof mass as well as the harvester’s amplitude. Finally, the 

maximum stress of the harvester during operation was limited to 80.0% of its fatigue limit stress that 

were tabulated in Table 2.  

The optimisation process was initiated at 50 different initial conditions to minimise the risk of 

finding a local maximum. The optimisation problem in Table 3 was applied to the three mentioned 

cantilever beam materials for a constrained practical volume of 150 cm3 ≤ 𝑉𝑝 ≤  500 cm3 in intervals 

of 50 cm3. Normally, optimisation is usually performed under the condition of optimum load 

resistance (𝑅𝐿 = 𝑅𝐿
𝑜𝑝𝑡

) as one would want to maximise the power output of the harvester, which 

occurs at the optimum load resistance. This means that the case of where the harvester is operating at 

𝑅𝐿 ≠ 𝑅𝐿
𝑜𝑝𝑡

 was not considered in the optimisation. However, there may exist situations where due to 

the applied constraints, the maximum power achievable by the harvester is not located at the optimum 

load resistance. To analyse this, the load resistance was defined as a parameter of the objective 

function in Table 4, 𝑃𝑎𝑣𝑒 = 𝑓(𝐿, ℎ, 𝑤, 𝐿𝑚𝑎𝑠𝑠, 𝑤𝑚𝑎𝑠𝑠, ℎ𝑚𝑎𝑠𝑠, 𝑅𝐿), and constraint to values more than 

zero, 𝑅𝐿 > 0. The optimisation problem was then repeated for the same two cases of fixed and non-
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constrained beam thickness. Fig. 8 describes the variation of the optimum average power output, 𝑃𝑎𝑣𝑒  

and RMS voltage output, 𝑉𝑟𝑚𝑠 against 𝑉𝑝 for the three beam materials under the conditions of 𝑅𝐿
𝑜𝑝𝑡

 

and 𝑅𝐿 as a parameter, 𝑅𝐿
𝑝

. It is worth to mention that for each different practical volume constraints, 

the optimum solution resulted in a geometry that converged to the limit of this constraint, meaning that 

if the volume was constrained to 𝑉𝑝  = 500 cm3, then the optimised solution would maximise the 

geometry of the harvester to achieve 500 cm3 for maximum power output. 

  

  

 

Fig. 8. Optimised SDOF harvester power output (top row) and voltage output (bottom row) against the practical 

volume constraint for fixed and unconstrained beam thickness condition. 

Results in Fig. 8 shows that for the set constraints, the glass fibre cantilever beam would generate 

the highest power output for both cases of fixed and unconstraint beam thickness. Under the case of a 

fixed beam thickness, the power and voltage outputs of the harvesters are seen to converge and remain 

approximately the same despite the increase in the practical volume. In terms of design, this analysis 

demonstrates the irrelevance of considering a larger volume space if the thickness of the beam and the 

electromagnetic components are constrained since a similar power output can be obtained at a much 

smaller volume. However, if the beam thickness was not constrained, significant increase in the power 

and voltage output can be observed with increasing volume.  

For the stainless steel and aluminium beam, the condition of 𝑅𝐿
𝑜𝑝𝑡

 and 𝑅𝐿
𝑝

 lead to a very similar 

result in terms of power output for both cases of constrained and unconstrained thickness. However, 
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the voltage output under the condition of 𝑅𝐿
𝑝

 can be up to 19.0% lower than the voltage output under 

the 𝑅𝐿
𝑜𝑝𝑡

 condition. This is because the magnitude of 𝑅𝐿
𝑝

 was recorded to be lower than 𝑅𝐿
𝑜𝑝𝑡

 for all the 

performed optimisations. On the other hand, under a fixed beam thickness, the glass fibre harvester 

displayed a significant (17.8%) increase in power output under the condition of 𝑅𝐿
𝑝

 as compared to 

𝑅𝐿
𝑜𝑝𝑡

, although a lower voltage output was also recorded. In the case of unconstrained beam thickness, 

the glass fibre harvester demonstrated a similar power output under the 𝑅𝐿
𝑜𝑝𝑡

 and 𝑅𝐿
𝑝

 conditions at 

higher practical volumes. However, the voltage output under the condition of 𝑅𝐿
𝑝

 was much lower as 

compared to the 𝑅𝐿
𝑜𝑝𝑡

 condition. The reason that the glass fibre harvester displayed a better power 

output in the fixed beam thickness case under the condition of 𝑅𝐿
𝑝

 is because glass fibre has a low 

fatigue stress limit and also a low damping capacity. This makes it harder for the glass fibre harvester 

to achieve the set stress constraint in Table 4 since a low damping generally leads to a higher 

amplitude and stress, therefore limiting the range of possible variations in the optimisation especially 

since the beam thickness was fixed. When coupled with the 𝑅𝐿
𝑜𝑝𝑡

 condition, the optimisation becomes 

more limited as the electromagnetic damping of the harvester under the 𝑅𝐿
𝑜𝑝𝑡

 condition is always lower 

than the mechanical damping, making it harder to achieve a lower stress. Stainless steel and 

aluminium have a higher fatigue limit stress, allowing more room for optimisation. Additionally, the 

final stress value corresponding to the optimised parameters of the stainless steel and aluminium 

harvesters did not reach the stress limit set in Table 4, unlike the glass fibre harvester. Overall, this 

analysis suggest that to maximise the performance of a SDOF electromagnetic harvester, the 𝑅𝐿
𝑜𝑝𝑡

 

condition should be considered when optimising for materials with a high fatigue limit stress whereas 

the 𝑅𝐿
𝑝

 condition should be used for materials that has a low fatigue limit stress and damping. 

7. Power limit of a SDOF electromagnetic harvester 

In an earlier study, William and Yates [40] showed that under the uncoupled conditions, there 

exists a power limit for a specific vibration energy harvester. This means that for a specific base input 

and natural frequency, the power output of the harvester cannot exceed a certain value regardless of 

how high the electromagnetic coupling factor is. The power limit for a cantilever-based 

electromagnetic vibration energy harvester can be derived by considering the condition of 𝑅𝐿
𝑜𝑝𝑡

 and 

substituting Eq. (25) into Eq. (24).  

𝑃𝑎𝑣𝑒 = {
1

2√2𝑑𝑐
𝑚𝑒𝐺𝐹1[𝜑1(𝐿) + 𝑥𝑐𝜑1′(𝐿)]}

2
𝐾2/𝑅𝑐

𝐾2/𝑅𝑐+𝑑𝑐
 (26) 

Here, 𝐾2/𝑅𝑐 is designated as the electromagnetic coupling coefficient of the harvester. It is easy to 

notice that as 𝐾2/𝑅𝑐 → ∞, 

𝐾2

𝑅𝑐
⁄

𝐾2
𝑅𝑐

⁄ +𝑑𝑐

→ 1 (27) 

Eq. (27) holds true even when  𝑁, 𝐵, 𝑙 or 𝑓 were to be increased indefinitely. This shows that the 

power limit, 𝑃𝑙𝑖𝑚, of the harvester when 𝐾2/𝑅𝑐 → ∞ is  

 𝑃𝑙𝑖𝑚 =
1

8𝑑𝑐
𝑚𝑒

2𝐺2𝐹1
2[𝜑1(𝐿) + 𝑥𝑐𝜑1′(𝐿)]2 (28) 

Eq. (28) is observed to be independent of its electromagnetic parameters. With a bit of effort, it can 

be shown that Eq. (28) meets the criteria of optimum load resistance when 𝐾2/𝑑𝑐 ≫ 𝑅𝑐, which is 𝜁𝑒 =
𝜁𝑚. Eq. (28) can be optimized to show the maximum power limit of the harvester. In addition, Eq. (28) 

also highlights the importance of maximizing the electromagnetic coupling coefficient to obtain a 

higher power output when considering the optimum load resistance. 
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Note that the power limit of the harvester is only defined under the optimum load resistance 

condition since this condition corresponds to the maximum power output of the specific harvester. Fig. 

9 below describes the optimized practical 𝑃𝑙𝑖𝑚 output of each beam material in Table 3 for different 𝑉𝑝 

values under a constant base acceleration of 0.1 g and a fixed fundamental natural frequency of 25.0 

Hz. The same constraints as in Table 4 were applied and the same steel material was used for the proof 

mass. It was assumed that 𝐾2/𝑅𝑐 was increased by increasing 𝐵, therefore retaining the same inertial 

terms. 

 

Fig. 9. Optimised SDOF harvester power limit against practical volume constraint for aluminium, stainless steel 

and glass fibre harvesters. 

Overall, the results in Fig. 9 show an increase in 𝑃𝑙𝑖𝑚 when the practical volume increases, which 

has been commonly understood. Is can be observed that for all practical volumes, the glass fibre 

harvester demonstrates the highest power limit. The aluminium harvester beam displayed the lowest 

overall power limit for all practical volumes due to its higher damping. Generally, knowing the power 

limit of a harvester one can give an idea on the capacity of the harvester. For example, using the same 

coil, magnets and proof mass material, if one wishes to generate an average power output of 45.0 mW 

for a vibrating base input of 0.1 g at 25 Hz within a constrained space of 200.0 cm3, the only possible 

material that can achieve this would be glass fibre. On the other hand, it would be impossible to 

achieve an average power output of 70.0 mW within the same volume space for any of the beam 

materials presented in Fig. 9. 

The power limit presented by Eq. (28) and Fig. 9 is under the ideal condition, where 𝐾2/𝑅𝑐 → ∞, 

which may be difficult to achieve in practical applications. Therefore, a more practical approach 

would be to investigate the fraction of 𝑃𝑙𝑖𝑚 that is practically achievable. Based of Eq. (27), to get as 

close as to Eq. (28), 𝐾2/𝑅𝑐  must be much greater than the mechanical damping constant of the 

harvester, 𝑑𝑐. The smaller 𝑑𝑐 is, the lower the coupling coefficient required to achieve a power output 

that is closer to 𝑃𝑙𝑖𝑚. However, at higher practical volumes, the optimized dimension of the harvester 

tends to achieve a higher damping coefficient due to the increase in the effective mass. Fig. 10 (left) 

describes the variation in 𝑑𝑐 against 𝑉𝑝 for the results presented in Fig. 10. The current coil and magnet 

arrangement used in the experiment has an electromagnetic coupling coefficient of 𝐾2/𝑅𝑐 = 0.65 kgs-1. 

If the horizontal distance between the magnets were to reduce until the gap between the magnets and 

the coil was 0.1 mm, the average magnetic flux density of the magnets would increase to 0.46 T, 

making it possible to achieve a coupling coefficient value of approximately 𝐾2/𝑅𝑐  = 2.0 kgs-1. 

Generally, a coupling coefficient larger than 1.0 kgs-1 is considered to be high. Assuming a coupling 

value of 𝐾2/𝑅𝑐 = 2.0 kgs-1 and that the optimised parameters from Fig. 9 are unchanged, Fig. 10 (right) 

describes the achievable 𝑃𝑎𝑣𝑒 as a fraction of 𝑃𝑙𝑖𝑚. This assumption however is an underestimation 

since the optimized parameters change for different coupling coefficient values and would result in a 

slightly higher power output than the results presented in Fig. 10. 
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Fig. 10. Variation in mechanical damping constant (left) and ratio of power output to power limit (right) against 

the practical volume constraint for aluminium, stainless steel and glass fibre harvesters. 

Fig. 10 shows that at lower practical volumes, it is possible to achieve a high portion of 𝑃𝑙𝑖𝑚 when 

considering a high electromagnetic coupling value In other words, approximately 80.0% of 𝑃𝑙𝑖𝑚  is 

considered achievable under these volumes. However, the percentage of achievable 𝑃𝑙𝑖𝑚 drops as the 

practical volume increases due to the increase in the mechanical damping constant, although the actual 

value of 𝑃𝑎𝑣𝑒 increases with increasing 𝑉𝑝 as was seen in Fig. 8. In other words, this means that the 

capability of the harvester to reach its maximum power output decreases with damping or volume. 

William and Yates [40] and Stephen [41] have both modelled an identical equation for SDOF 

vibration energy harvesters which one describes as the harvester’s maximum power output whereas 

the latter defined it as the power flow into the harvester. Based on this argument, if 𝑃𝑙𝑖𝑚 was assumed 

to be equal to the power supplied to the harvester, 𝑃𝑎𝑣𝑒 /𝑃𝑙𝑖𝑚  would indicate the efficiency of the 

harvester, which decreases with increasing volume. A higher efficiency ratio may be possible if a 

larger electromagnetic coupling value was obtained or if the damping constant of the harvester was 

reduced. Nevertheless, despite the drop in efficiency with increasing 𝑉𝑝, the actual magnitude of 𝑃𝑎𝑣𝑒  

still increases with increasing 𝑉𝑝.  

Overall, the study here shows that considering a high 𝐾2/𝑅𝑐 value, the ratio of 𝑃𝑎𝑣𝑒/𝑃𝑙𝑖𝑚 decreases 

with increasing practical volume when the structural aspect of the harvester was optimised due to the 

increase in 𝑑𝑐. This means that it is important to first select a material that has a low damping capacity 

for the harvester to achieve a higher 𝑃𝑎𝑣𝑒/𝑃𝑙𝑖𝑚 value. However, if the material of the harvester could 

not be changed due to the requirements of a particular application, the mechanical damping parameter 

would then be generally difficult to control as it has a complex relation with many structural 

parameters. One may suggest reducing the effective mass on the harvester as this would reduce the 

value of 𝑑𝑐. However, in doing so it would also cause the power limit of the harvester to decrease 

according to Eq. (28), which would then result in a decrease of the average power output. In fact, in 

this case, it would be more desirable to increase the effective mass to obtain a larger power output and 

to also maximise the value of 𝐾2/𝑅𝑐 by optimising the electromagnetic aspect in order to increase the 

ratio of 𝑃𝑎𝑣𝑒/𝑃𝑙𝑖𝑚. 

8. Proof mass considerations for a SDOF electromagnetic harvester. 

The results presented so far were under the assumption of a cuboid shaped proof mass and a 

constant inertial term for the coil component that is fixed at the free end of the cantilever beam. 

Generally, the inertial term of an object placed on a cantilever beam plays an important role on the 

power output of the harvester. The inertial term of an object is dependent on both its shape and its 

mass. Hence, it would be interesting to know as to how the mass, inertial term and centre of gravity of 

a proof mass placed onto the free end of a cantilever beam effects the performance of a SDOF 
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cantilever-based electromagnetic vibration energy harvester. To analyse this, an optimisation was 

performed for the aluminium cantilever beam by making the mass, inertial terms and centre of gravity 

of an arbitrary mass as a function of the average power output. For simplicity, it was assumed that the 

mass is symmetrical along its width and it is attached rigidly to the free end of the beam as seen in Fig. 

11. 

Cantilever Beam

E, ρ, L, w, h

Mass

mmass, i0mass, 
cogx

mass, cogz
massVibrating 

base

x

z

 

Fig. 11. Considerations of four different parameters to analyse the effect of an arbitrary proof mass geometry and 

mass on the power output of an electromagnetic vibration energy harvester 

Here, 𝑚𝑚𝑎𝑠𝑠 , 𝑖0𝑚𝑎𝑠𝑠 , 𝑐𝑜𝑔𝑥
𝑚𝑎𝑠𝑠 , 𝑐𝑜𝑔𝑧

𝑚𝑎𝑠𝑠  defines the mass, moment of inertia at the centre of 

gravity and the centre of gravity in the 𝑥 and 𝑧 direction of the arbitrary mass. Note that the circular 

shape of the proof mass in Fig. 11 is only a figurative representation and does not reflect the true shape 

of the mass. Furthermore, 𝑖0𝑚𝑎𝑠𝑠  only defines the shape contribution of the inertial term. Table 5 

describes the objective function and constraints applied in the optimisation problem. Both conditions 

of optimum load resistance and load resistance as a parameter were considered in this analysis. 

Table 5. Objective function and constraints applied to the arbitrary mass optimisation problem for the SDOF harvester. 

Objective function 

Maximise: 

𝑃𝑎𝑣𝑒 = 𝑓(𝐿, ℎ, 𝑤, 𝑚𝑚𝑎𝑠𝑠, 𝑖0𝑚𝑎𝑠𝑠, 𝑐𝑜𝑔𝑥
𝑚𝑎𝑠𝑠, 𝑐𝑜𝑔𝑧

𝑚𝑎𝑠𝑠) 

Constraints 

𝐿 ≥ 10ℎ 

ℎ, 𝑤 > 0 

0 ≤ 𝑚𝑚𝑎𝑠𝑠, 𝑖0𝑚𝑎𝑠𝑠, 𝑐𝑜𝑔𝑥
𝑚𝑎𝑠𝑠, 𝑐𝑜𝑔𝑧

𝑚𝑎𝑠𝑠 ≤ 𝑢𝐿 

𝑤2𝑀 ≤ 𝐸𝐼ℎ 

𝐺 = 0.1 g  

𝜔1 = 25.0 Hz 

|𝜎𝑚𝑎𝑥| ≤ 0.8𝜎𝑓 

(𝐿 + 2𝑐𝑜𝑔𝑥
𝑚𝑎𝑠𝑠)𝑤ℎ𝑝 ≤ 200.0 cm3 

The practical volume specified in Table 5 is an approximation as the actual shape of the mass is 

actually unknown. However, the actual volume is not important as the focus of this analysis is to 

observe the convergence of variables 𝑚𝑚𝑎𝑠𝑠 , 𝑖0𝑚𝑎𝑠𝑠 , 𝑐𝑜𝑔𝑥
𝑚𝑎𝑠𝑠  and 𝑐𝑜𝑔𝑧

𝑚𝑎𝑠𝑠  in the optimization 

problem, where 𝑢𝐿 defines an arbitrary upper limit for the specified variables. Fig. 12 illustrates the 

variation in variables 𝑚𝑚𝑎𝑠𝑠 , 𝑖0𝑚𝑎𝑠𝑠 , 𝑐𝑜𝑔𝑥
𝑚𝑎𝑠𝑠  and 𝑐𝑜𝑔𝑧

𝑚𝑎𝑠𝑠  normalized by the upper limit, 𝑢𝐿 , 

against the number of iterations in the optimisation problem for cases of 𝑅𝐿
𝑜𝑝𝑡

 and 𝑅𝐿
𝑝

. 
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Fig. 12. Variation in the arbitrary mass’s normalised mass and inertial terms with number of iterations for 𝑅𝐿
𝑜𝑝𝑡

 

(left) and 𝑅𝐿
𝑝
 (right) condition. 

Fig. 12 shows that 𝑚𝑚𝑎𝑠𝑠  converges to the set upper limit, whereas 𝑖0𝑚𝑎𝑠𝑠 , 𝑐𝑜𝑔𝑥
𝑚𝑎𝑠𝑠  and 

𝑐𝑜𝑔𝑧
𝑚𝑎𝑠𝑠 converges to zero for the harvester to achieve its optimum average power output. The same 

trend was observed in both cases of 𝑅𝐿
𝑜𝑝𝑡

 and 𝑅𝐿
𝑝

. The analysis suggests that the best type of mass to 

attach at the free end of the electromagnetic vibration energy harvester to maximise its power is 

actually in a form of a point mass. It is practically unrealistic to make the coil or magnets attached on 

the harvester to resemble a point mass and usually, the topology of these components are pre-

determined and difficult to adjust. However, it is possible to change the properties of the additional 

proof mass added for the purpose of tuning the natural frequency of the harvester. Based on Fig. 8, one 

can deduce that the best method to increase the mass and reduce the inertial term of a proof mass is by 

using a material of high density such as tungsten. This way, a larger mass can be achieved for a 

smaller volume and hence a smaller inertial term. Moreover, to reduce the inertial terms also means 

that the proof mass must be placed as close as possible to 𝑥 = 𝐿 on the beam. Ideally, the centre of 

gravity of the mass should lie exactly on this position. However, this may be difficult depending on 

designs since a large mass may interfere with the vibration of the coil between the magnets. 

Considering the current coil and magnet design as in Fig. 1, a good location to place the proof mass 

would be similar to the layout shown in Fig. 4.    

To verify this argument, the optimisation problem conducted in Table 4 was repeated for the 

aluminium harvester using different proof mass densities ranging between 0 ≤ 𝜌𝑚𝑎𝑠𝑠 ≤ 25000 kgm-3, 

under a constrained volume of 𝑉𝑝 = 200 cm3 and using the same coil and magnets as in the experiment. 

The beam thickness of the aluminium harvester was fixed the value given in Table 2 for a more 

practical comparison. In this analysis, the condition of optimum load resistance was implemented. Fig. 

13 below illustrates the results of the analysis. The red marking indicates the average power output 

and RMS voltage output of the aluminium beam when using a steel proof mass as recorded in Fig. 8. 
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Fig. 13. Variation in power output (left) and voltage output (right) with proof mass density for an aluminium 

harvester with a steel proof mass. 

Fig. 13 demonstrates an increase in average power output when the density of the proof mass 

increases. On the other hand, the generated voltage is observed to decrease when using a higher 

density proof mass. It can be observed that the increase in power output is much more significant at 

lower proof mass density as compared to higher ones. The same observation can be made for the 

decrease in voltage output. The increase in power between a tungsten (𝜌𝑚𝑎𝑠𝑠 = 19300 kgm-3) proof 

mass when compared to an aluminium (𝜌𝑚𝑎𝑠𝑠 = 2700 kgm-3) proof mass is approximately 50.8%, with 

a 10.1% drop in voltage whereas if the tungsten proof mass was compared to a steel (𝜌𝑚𝑎𝑠𝑠 = 7800 

kgm-3) proof mass, the increase in power is only 7.6%, with a 2.2% drop in voltage. Nevertheless, this 

highlights the importance of using a high-density proof mass to maximise the power output of an 

electromagnetic vibration energy harvesters. 

9. Conclusion 

This study examines several important considerations that must be made when optimising the 

structural aspects of a SDOF electromagnetic vibration energy harvester. The harvester considered 

adopts the typical cantilever beam design and is excited at its clamped end. Firstly, the mathematical 

models for the power output and the damping ratio of the SDOF harvester were derived from the 

Euler-Bernoulli beam theory and the critically damped stress method. The models were experimentally 

verified for four different cantilever beam materials. While the experimental results of three materials 

displayed an excellent agreement with the theoretical derivations, the electromagnetic damping model 

predicted a lower damping for the PVC beam when compared to the experimental value. Hence, this 

material was excluded in further analysis. A structural optimisation was then performed on the 

remaining three materials by varying the dimensions of the cantilever beam and the proof mass, while 

maintaining the same electromagnetic components. It was concluded that if the thickness of the 

cantilever beam was fixed, the increase in the power output of the harvester with volume becomes 

insignificant at larger volumes. This means that for this case, it is more practical to consider a smaller 

volume. In addition, it was shown that for materials with a low damping capacity and a low fatigue 

limit stress, it is better to consider the 𝑅𝐿
𝑝

 condition in the optimisation instead of the 𝑅𝐿
𝑜𝑝𝑡

 condition to 

achieve a higher power output. Further analysis demonstrated the existence of a power limit that 

defines the maximum achievable power of an electromagnetic harvester when the electromagnetic 

coupling coefficient approaches infinity. It was observed that approximately 80.0% of the power limit 

can be achieved for low damping harvesters when considering a high electromagnetic coupling 

coefficient value and a small volume constraint. While this ratio was seen to decreases with increasing 

practical volume, the actual power output increases at larger volumes. The analysis has also shown 

that the ideal proof mass to maximise the power output of a SDOF harvester is a point mass. While 

this is not practical, it suggests the importance of considering a high density proof mass that is centred 
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as close as possible to the free end of the cantilever beam. Although the analysis conducted in this 

study are based on the cantilever beam design, the results presented would be applicable for other 

SDOF electromagnetic vibration energy harvester designs. 
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