42 research outputs found
Fabrication of monodisperse silica–polymer core–shell nanoparticles with excellent antimicrobial efficacy
Monodisperse nanoparticles with antimicrobial polymer shells
were fabricated using a seeded copolymerization; they exhibited
excellent antibacterial activities against gram-positive bacteria
as well as gram-negative bacteria.This work was supported by a grant from the Fundamental
R&D Program for Core Technology of Materials funded by
the Ministry of Knowledge Economy, Republic of Korea
Autophagy in Adipocyte Browning: Emerging Drug Target for Intervention in Obesity
Autophagy, lipophagy, and mitophagy are considered to be the major recycling processes for protein aggregates, excess fat, and damaged mitochondria in adipose tissues in response to nutrient status-associated stress, oxidative stress, and genotoxic stress in the human body. Obesity with increased body weight is often associated with white adipose tissue (WAT) hypertrophy and hyperplasia and/or beige/brown adipose tissue atrophy and aplasia, which significantly contribute to the imbalance in lipid metabolism, adipocytokine secretion, free fatty acid release, and mitochondria function. In recent studies, hyperactive autophagy in WAT was observed in obese and diabetic patients, and inhibition of adipose autophagy through targeted deletion of autophagy genes in mice improved anti-obesity phenotypes. In addition, active mitochondria clearance through activation of autophagy was required for beige/brown fat whitening – that is, conversion to white fat. However, inhibition of autophagy seemed detrimental in hypermetabolic conditions such as hepatic steatosis, atherosclerosis, thermal injury, sepsis, and cachexia through an increase in free fatty acid and glycerol release from WAT. The emerging concept of white fat browning–conversion to beige/brown fat–has been controversial in its anti-obesity effect through facilitation of weight loss and improving metabolic health. Thus, proper regulation of autophagy activity fit to an individual metabolic profile is necessary to ensure balance in adipose tissue metabolism and function, and to further prevent metabolic disorders such as obesity and diabetes. In this review, we summarize the effect of autophagy in adipose tissue browning in the context of obesity prevention and its potential as a promising target for the development of anti-obesity drugs
Autophagy in Adipocyte Browning: Emerging Drug Target for Intervention in Obesity
Autophagy, lipophagy, and mitophagy are considered to be the major recycling processes for protein aggregates, excess fat, and damaged mitochondria in adipose tissues in response to nutrient status-associated stress, oxidative stress, and genotoxic stress in the human body. Obesity with increased body weight is often associated with white adipose tissue (WAT) hypertrophy and hyperplasia and/or beige/brown adipose tissue atrophy and aplasia, which significantly contribute to the imbalance in lipid metabolism, adipocytokine secretion, free fatty acid release, and mitochondria function. In recent studies, hyperactive autophagy in WAT was observed in obese and diabetic patients, and inhibition of adipose autophagy through targeted deletion of autophagy genes in mice improved anti-obesity phenotypes. In addition, active mitochondria clearance through activation of autophagy was required for beige/brown fat whitening – that is, conversion to white fat. However, inhibition of autophagy seemed detrimental in hypermetabolic conditions such as hepatic steatosis, atherosclerosis, thermal injury, sepsis, and cachexia through an increase in free fatty acid and glycerol release from WAT. The emerging concept of white fat browning–conversion to beige/brown fat– has been controversial in its anti-obesity effect through facilitation of weight loss and improving metabolic health. Thus, proper regulation of autophagy activity fit to an individual metabolic profile is necessary to ensure balance in adipose tissue metabolism and function, and to further prevent metabolic disorders such as obesity and diabetes. In this review, we summarize the effect of autophagy in adipose tissue browning in the context of obesity prevention and its potential as a promising target for the development of anti-obesity drugs
Characteristics of poisoning in younger children according to different forms of the drugs
Purpose This study aimed to investigate the characteristics of poisoning drug ingested by younger children, and to compare the clinical outcome by drug forms. Methods This was a retrospective analysis based on medical records from the Emergency Department based Injury In-depth Surveillance (EDIIS) registry in Korea from January to December 2015. Patients aged 7 years or younger visiting the emergency department (ED) with drug poisoning were included. We classified the forms of drugs as tablets or syrup, and analyzed the characteristics by size, color, and shape. In addition, clinical outcomes and ED length of stay were compared according to the drug forms. Results A total of 308 cases were collected, and 202 patients finally were analyzed. Tablets and capsules (TACs) were more common than syrup (67.3% vs. 32.7%). Regarding clinical outcomes, patients who took TACs had higher admission rate (18.4% vs. 7.6%, P = 0.040) without a significant difference in ED length of stay compared to those who took syrups. While commonly ingested drugs in TACs were hormones, sedative and analgesics, frequent drugs in syrup were antihistamines and cold drugs. In 136 case of TACs, median long and short axes were 0.85 cm (interquartile range [IQR], 0.7-1.1 cm) and 0.72 cm (IQR, 0.59-0.82 cm), respectively. Chromatic TACs were 80 cases (52.8%) and more common than achromatic TACs. Round shapes were preferred than angular ones (96.3% vs. 3.7%). Conclusion In younger children poisonings, the TACs showed higher incidence and admission rate compared to syrups. Especially, chromatic TACs and round shapes were preferred. Therefore, drugs with these characteristics need to be stored more carefully
Arsenite exposure suppresses adipogenesis, mitochondrial biogenesis and thermogenesis via autophagy inhibition in brown adipose tissue
Arsenite, a trivalent form of arsenic, is an element that occurs naturally in the environment. Humans are exposed to high dose of arsenite through consuming arsenite-contaminated drinking water and food, and the arsenite can accumulate in the human tissues. Arsenite induces oxidative stress, which is linked to metabolic disorders such as obesity and diabetes. Brown adipocytes dissipating energy as heat have emerging roles for obesity treatment and prevention. therefore, understanding the pathophysiological role of brown adipocytes can provide effective strategies delineating the link between arsenite exposure and metabolic disorders. Our study revealed that arsenite significantly reduced differentiation of murine brown adipocytes and mitochondrial biogenesis and respiration, leading to attenuated thermogenesis via decreasing UCP1 expression. Oral administration of arsenite in mice resulted in heavy accumulation in brown adipose tissue and suppression of lipogenesis, mitochondrial biogenesis and thermogenesis.Mechanistically, arsenite exposure significantly inhibited autophagy necessary for homeostasis of brown adipose tissue through suppression of Sestrin2 and ULK1. These results clearly confirm the emerging mechanisms underlying the implications of arsenite exposure in metabolic disorders
Arsenic Toxicity on Metabolism and Autophagy in Adipose and Muscle Tissues
Arsenic, a naturally occurring metalloid derived from the environment, has been studied worldwide for its causative effects in various cancers. However, the effects of arsenic toxicity on the development and progression of metabolic syndrome, including obesity and diabetes, has received less attention. Many studies suggest that metabolic dysfunction and autophagy dysregulation of adipose and muscle tissues are closely related to the development of metabolic disease. In the USA, arsenic contamination has been reported in some ground water, soil and grain samples in major agricultural regions, but the effects on adipose and muscle tissue metabolism and autophagy have not been investigated much. Here, we highlight arsenic toxicity according to the species, dose and exposure time and the effects on adipose and muscle tissue metabolism and autophagy. Historically, arsenic was used as both a poison and medicine, depending on the dose and treatment time. In the modern era, arsenic intoxication has significantly increased due to exposure from water, soil and food, which could be a contributing factor in the development and progression of metabolic disease. From this review, a better understanding of the pathogenic mechanisms by which arsenic alters metabolism and autophagy regulation could become a cornerstone leading to the development of therapeutic strategies against arsenic-induced toxicity and metabolic disease
Additivity and non-additivity of multipartite entanglement measures
We study the additivity property of three multipartite entanglement measures,
i.e. the geometric measure of entanglement (GM), the relative entropy of
entanglement and the logarithmic global robustness. First, we show the
additivity of GM of multipartite states with real and non-negative entries in
the computational basis. Many states of experimental and theoretical interests
have this property, e.g. Bell diagonal states, maximally correlated generalized
Bell diagonal states, generalized Dicke states, the Smolin state, and the
generalization of D\"{u}r's multipartite bound entangled states. We also prove
the additivity of other two measures for some of these examples. Second, we
show the non-additivity of GM of all antisymmetric states of three or more
parties, and provide a unified explanation of the non-additivity of the three
measures of the antisymmetric projector states. In particular, we derive
analytical formulae of the three measures of one copy and two copies of the
antisymmetric projector states respectively. Third, we show, with a statistical
approach, that almost all multipartite pure states with sufficiently large
number of parties are nearly maximally entangled with respect to GM and
relative entropy of entanglement. However, their GM is not strong additive;
what's more surprising, for generic pure states with real entries in the
computational basis, GM of one copy and two copies, respectively, are almost
equal. Hence, more states may be suitable for universal quantum computation, if
measurements can be performed on two copies of the resource states. We also
show that almost all multipartite pure states cannot be produced reversibly
with the combination multipartite GHZ states under asymptotic LOCC, unless
relative entropy of entanglement is non-additive for generic multipartite pure
states.Comment: 45 pages, 4 figures. Proposition 23 and Theorem 24 are revised by
correcting a minor error from Eq. (A.2), (A.3) and (A.4) in the published
version. The abstract, introduction, and summary are also revised. All other
conclusions are unchange
An overview of methods to mitigate artifacts in optical coherence tomography imaging of the skin
Background: Optical coherence tomography (OCT) of skin delivers three-dimensional images of tissue microstructures. Although OCT imaging offers a promising high-resolution modality, OCT images suffer from some artifacts that lead to misinterpretation of tissue structures. Therefore, an overview of methods to mitigate artifacts in OCT imaging of the skin is of paramount importance. Speckle, intensity decay, and blurring are three major artifacts in OCT images. Speckle is due to the low coherent light source used in the configuration of OCT. Intensity decay is a deterioration of light with respect to depth, and blurring is the consequence of deficiencies of optical components.
Method: Two speckle reduction methods (one based on artificial neural network and one based on spatial compounding), an attenuation compensation algorithm (based on Beer-Lambert law) and a deblurring procedure (using deconvolution), are described. Moreover, optical properties extraction algorithm based on extended Huygens-Fresnel (EHF) principle to obtain some additional information from OCT images are discussed.
Results: In this short overview, we summarize some of the image enhancement algorithms for OCT images which address the abovementioned artifacts. The results showed a significant improvement in the visibility of the clinically relevant features in the images. The quality improvement was evaluated using several numerical assessment measures.
Conclusion: Clinical dermatologists benefit from using these image enhancement algorithms to improve OCT diagnosis and essentially function as a noninvasive optical biopsy