151 research outputs found

    Hermitian geometry of Lie algebras with abelian ideals of codimension 22

    Full text link
    We examine Hermitian metrics on unimodular Lie algebras with JJ-invariant abelian ideal of codimension two, and give a classification of all Bismut K\"ahler-like and all Bismut torsion-parallel metrics on such Lie algebras.Comment: 21 page

    Underwater Intention Recognition using Head Motion and Throat Vibration for Supernumerary Robotic Assistance

    Full text link
    This study presents a multi-modal mechanism for recognizing human intentions while diving underwater, aiming to achieve natural human-robot interactions through an underwater superlimb for diving assistance. The underwater environment severely limits the divers' capabilities in intention expression, which becomes more challenging when they intend to operate tools while keeping control of body postures in 3D with the various diving suits and gears. The current literature is limited in underwater intention recognition, impeding the development of intelligent wearable systems for human-robot interactions underwater. Here, we present a novel solution to simultaneously detect head motion and throat vibrations under the water in a compact, wearable design. Experiment results show that using machine learning algorithms, we achieved high performance in integrating these two modalities to translate human intentions to robot control commands for an underwater superlimb system. This study's results paved the way for future development in underwater intention recognition and underwater human-robot interactions with supernumerary support.Comment: 6 pages, 9 figures, 3 tables, accepted to IEEE CASE 202

    Characterization of cellular senescence patterns predicts the prognosis and therapeutic response of hepatocellular carcinoma

    Get PDF
    Background: Hepatocellular carcinoma (HCC) is a prevalent malignancy with a high mortality rate. Cellular senescence, an irreversible state of cell cycle arrest, plays a paradoxical role in cancer progression. Here, we aimed to identify Hepatocellular carcinoma subtypes by cellular senescence-related genes (CSGs) and to construct a cellular senescence-related gene subtype predictor as well as a novel prognostic scoring system, which was expected to predict clinical outcomes and therapeutic response of Hepatocellular carcinoma.Methods: RNA-seq data and clinical information of Hepatocellular carcinoma patients were derived from The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC). The “multi-split” selection was used to screen the robust prognostic cellular senescence-related genes. Unsupervised clustering was performed to identify CSGs-related subtypes and a discriminant model was obtained through multiple statistical approaches. A CSGs-based prognostic model-CSGscore, was constructed by LASSO-Cox regression and stepwise regression. Immunophenoscore (IPS) and Tumor Immune Dysfunction and Exclusion (TIDE) were utilized to evaluate the immunotherapy response. Tumor stemness indices mRNAsi and mDNAsi were used to analyze the relationship between CSGscore and stemness.Results: 238 robust prognostic differentially expressed cellular senescence-related genes (DECSGs) were used to categorize all 336 hepatocellular carcinoma patients of the TCGA-LIHC cohort into two groups with different survival. Two hub genes, TOP2A and KIF11 were confirmed as key indicators and were used to form a precise and concise cellular senescence-related gene subtype predictor. Five genes (PSRC1, SOCS2, TMEM45A, CCT5, and STC2) were selected from the TCGA training dataset to construct the prognostic CSGscore signature, which could precisely predict the prognosis of hepatocellular carcinoma patients both in the training and validation datasets. Multivariate analysis verified it as an independent prognostic factor. Besides, CSGscore was also a valuable predictor of therapeutic responses in hepatocellular carcinoma. More downstream analysis revealed the signature genes were significantly associated with stemness and tumor progression.Conclusion: Two subtypes with divergent outcomes were identified by prognostic cellular senescence-related genes and based on that, a subtype indicator was established. Moreover, a prognostic CSGscore system was constructed to predict the survival outcomes and sensitivity of therapeutic responses in hepatocellular carcinoma, providing novel insight into hepatocellular carcinoma biomarkers investigation and design of tailored treatments depending on the molecular characteristics of individual patients

    Nanopore Sequencing Accurately Identifies the Mutagenic DNA Lesion O; 6; -Carboxymethyl Guanine and Reveals Its Behavior in Replication

    Get PDF
    O; 6; -carboxymethylguanine (O; 6; -CMG) is a highly mutagenic alkylation product of DNA, triggering transition mutations relevant to gastrointestinal cancer. However, precise localization of a single O; 6; -CMG with conventional sequencing platforms is challenging. Here nanopore sequencing (NPS), which directly senses single DNA bases according to their physiochemical properties, was employed to detect O; 6; -CMG. A unique O; 6; -CMG signal was observed during NPS and a single-event call accuracy of >95 % was achieved. Moreover, O; 6; -CMG was found to be a replication obstacle for Phi29 DNA polymerase (Phi29 DNAP), suggesting this lesion could cause DNA sequencing biases in next generation sequencing (NGS) approaches

    Satellite-based estimate of the variability of warm cloud properties associated with aerosol and meteorological conditions

    Get PDF
    Aerosol-cloud interaction (ACI) is examined using 10 years of data from the MODIS/Terra (morning orbit) and MODIS/Aqua (afternoon orbit) satellites. Aerosol optical depth (AOD) and cloud properties retrieved from both sensors are used to explore in a statistical sense the morning-to-afternoon variation of cloud properties in conditions with low and high AOD, over both land and ocean. The results show that the interaction between aerosol particles and clouds is more complex and of greater uncertainty over land than over ocean. The variation in d(Cloud_X), defined as the mean change in cloud property Cloud_X between the morning and afternoon overpasses in high-AOD conditions minus that in low-AOD conditions, is different over land and ocean. This applies to cloud droplet effective radius (CDR), cloud fraction (CF) and cloud top pressure (CTP), but not to cloud optical thickness (COT) and cloud liquid water path (CWP). Both COT and CWP increase over land and ocean after the time step, irrespective of the AOD. However, the initial AOD conditions can affect the amplitude of variation of COT and CWP. The effects of initial cloud fraction and meteorological conditions on the change in CF under lowand high-AOD conditions after the 3 h time step over land are also explored. Two cases are considered: (1) when the cloud cover increases and (2) when the cloud cover decreases. For both cases, we find that almost all values of d(CF) are positive, indicating that the variations of CF are larger in high AOD than that in low AOD after the 3 h time step. The results also show that a large increase in cloud fraction occurs when scenes experience large AOD and stronger upward motion of air parcels. Furthermore, the increase rate of cloud cover is larger for high AOD with increasing relative humidity (RH) when RH is larger than 20 %. We also find that a smaller increase in cloud fraction occurs when scenes experience larger AOD and larger initial cloud cover. Overall, the analysis of the diurnal variation of cloud properties provides a better understanding of aerosol-cloud interaction over land and ocean.Peer reviewe

    Analysis of aerosol effects on warm clouds over the Yangtze River Delta from multi-sensor satellite observations

    Get PDF
    Aerosol effects on low warm clouds over the Yangtze River Delta (YRD, eastern China) are examined using co-located MODIS, CALIOP and CloudSat observations. By taking the vertical locations of aerosol and cloud layers into account, we use simultaneously observed aerosol and cloud data to investigate relationships between cloud properties and the amount of aerosol particles (using aerosol optical depth, AOD, as a proxy). Also, we investigate the impact of aerosol types on the variation of cloud properties with AOD. Finally, we explore how meteorological conditions affect these relationships using ERA-Interim reanalysis data. This study shows that the relation between cloud properties and AOD depends on the aerosol abundance, with a different behaviour for low and high AOD (i.e. AOD0.35). This applies to cloud droplet effective radius (CDR) and cloud fraction (CF), but not to cloud optical thickness (COT) and cloud top pressure (CTP). COT is found to decrease when AOD increases, which may be due to radiative effects and retrieval artefacts caused by absorbing aerosol. Conversely, CTP tends to increase with elevated AOD, indicating that the aerosol is not always prone to expand the vertical extension. It also shows that the COT-CDR and CWP (cloud liquid water path)-CDR relationships are not unique, but affected by atmospheric aerosol loading. Furthermore, separation of cases with either polluted dust or smoke aerosol shows that aerosol-cloud interaction (ACI) is stronger for clouds mixed with smoke aerosol than for clouds mixed with dust, which is ascribed to the higher absorption efficiency of smoke than dust. The variation of cloud properties with AOD is analysed for various relative humidity and boundary layer thermodynamic and dynamic conditions, showing that high relative humidity favours larger cloud droplet particles and increases cloud formation, irrespective of vertical or horizontal level. Stable atmospheric conditions enhance cloud cover horizontally. However, unstable atmospheric conditions favour thicker and higher clouds. Dynamically, upward motion of air parcels can also facilitate the formation of thicker and higher clouds. Overall, the present study provides an understanding of the impact of aerosols on cloud properties over the YRD. In addition to the amount of aerosol particles (or AOD), evidence is provided that aerosol types and ambient environmental conditions need to be considered to understand the observed relationships between cloud properties and AOD.Peer reviewe

    Identification and validation of IgG N-glycosylation biomarkers of esophageal carcinoma

    Get PDF
    Introduction: Altered Immunoglobulin G (IgG) N-glycosylation is associated with aging, inflammation, and diseases status, while its effect on esophageal squamous cell carcinoma (ESCC) remains unknown. As far as we know, this is the first study to explore and validate the association of IgG N-glycosylation and the carcinogenesis progression of ESCC, providing innovative biomarkers for the predictive identification and targeted prevention of ESCC. Methods: In total, 496 individuals of ESCC (n=114), precancerosis (n=187) and controls (n=195) from the discovery population (n=348) and validation population (n=148) were recruited in the study. IgG N-glycosylation profile was analyzed and an ESCC-related glycan score was composed by a stepwise ordinal logistic model in the discovery population. The receiver operating characteristic (ROC) curve with the bootstrapping procedure was used to assess the performance of the glycan score. Results: In the discovery population, the adjusted OR of GP20 (digalactosylated monosialylated biantennary with core and antennary fucose), IGP33 (the ratio of all fucosylated monosyalilated and disialylated structures), IGP44 (the proportion of high mannose glycan structures in total neutral IgG glycans), IGP58 (the percentage of all fucosylated structures in total neutral IgG glycans), IGP75 (the incidence of bisecting GlcNAc in all fucosylated digalactosylated structures in total neutral IgG glycans), and the glycan score are 4.03 (95% CI: 3.03-5.36, P \u3c 0.001), 0.69 (95% CI: 0.55-0.87, P \u3c 0.001), 0.56 (95% CI: 0.45-0.69, P \u3c 0.001), 0.52 (95% CI: 0.41-0.65, P \u3c 0.001), 7.17 (95% CI: 4.77-10.79, P \u3c 0.001), and 2.86 (95% CI: 2.33-3.53, P \u3c 0.001), respectively. Individuals in the highest tertile of the glycan score own an increased risk (OR: 11.41), compared with those in the lowest. The average multi-class AUC are 0.822 (95% CI: 0.786-0.849). Findings are verified in the validation population, with an average AUC of 0.807 (95% CI: 0.758-0.864). Discussion: Our study demonstrated that IgG N-glycans and the proposed glycan score appear to be promising predictive markers for ESCC, contributing to the early prevention of esophageal cancer. From the perspective of biological mechanism, IgG fucosylation and mannosylation might involve in the carcinogenesis progression of ESCC, and provide potential therapeutic targets for personalized interventions of cancer progression

    Cholesterol 25-hydroxylase suppresses SARS-CoV-2 replication by blocking membrane fusion

    Get PDF
    Cholesterol 25-hydroxylase (CH25H) is an interferon (IFN)-stimulated gene that shows broad antiviral activities against a wide range of enveloped viruses. Here, using an IFN-stimulated gene screen against vesicular stomatitis virus (VSV)-SARS-CoV and VSV-SARS-CoV-2 chimeric viruses, we identified CH25H and its enzymatic product 25-hydroxycholesterol (25HC) as potent inhibitors of SARS-CoV-2 replication. Internalized 25HC accumulates in the late endosomes and potentially restricts SARS-CoV-2 spike protein catalyzed membrane fusion via blockade of cholesterol export. Our results highlight one of the possible antiviral mechanisms of 25HC and provide the molecular basis for its therapeutic development
    • …
    corecore