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Background: Hepatocellular carcinoma (HCC) is a prevalent malignancy with a

high mortality rate. Cellular senescence, an irreversible state of cell cycle arrest,

plays a paradoxical role in cancer progression. Here, we aimed to identify

Hepatocellular carcinoma subtypes by cellular senescence-related genes

(CSGs) and to construct a cellular senescence-related gene subtype

predictor as well as a novel prognostic scoring system, which was expected

to predict clinical outcomes and therapeutic response of Hepatocellular

carcinoma.

Methods: RNA-seq data and clinical information of Hepatocellular carcinoma

patients were derived from The Cancer Genome Atlas (TCGA) and International

Cancer Genome Consortium (ICGC). The “multi-split” selection was used to

screen the robust prognostic cellular senescence-related genes. Unsupervised

clustering was performed to identify CSGs-related subtypes and a discriminant

model was obtained through multiple statistical approaches. A CSGs-based

prognostic model-CSGscore, was constructed by LASSO-Cox regression and

stepwise regression. Immunophenoscore (IPS) and Tumor Immune

Dysfunction and Exclusion (TIDE) were utilized to evaluate the

immunotherapy response. Tumor stemness indices mRNAsi and mDNAsi

were used to analyze the relationship between CSGscore and stemness.
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Results: 238 robust prognostic differentially expressed cellular senescence-

related genes (DECSGs) were used to categorize all 336 hepatocellular

carcinoma patients of the TCGA-LIHC cohort into two groups with different

survival. Two hub genes, TOP2A and KIF11 were confirmed as key indicators and

were used to form a precise and concise cellular senescence-related gene

subtype predictor. Five genes (PSRC1, SOCS2, TMEM45A, CCT5, and STC2)

were selected from the TCGA training dataset to construct the prognostic

CSGscore signature, which could precisely predict the prognosis of

hepatocellular carcinoma patients both in the training and validation

datasets. Multivariate analysis verified it as an independent prognostic factor.

Besides, CSGscore was also a valuable predictor of therapeutic responses in

hepatocellular carcinoma. More downstream analysis revealed the signature

genes were significantly associated with stemness and tumor progression.

Conclusion: Two subtypes with divergent outcomes were identified by

prognostic cellular senescence-related genes and based on that, a subtype

indicator was established. Moreover, a prognostic CSGscore system was

constructed to predict the survival outcomes and sensitivity of therapeutic

responses in hepatocellular carcinoma, providing novel insight into

hepatocellular carcinoma biomarkers investigation and design of tailored

treatments depending on the molecular characteristics of individual patients.

KEYWORDS

cellular senescence, immune microenvironment, therapeutic response, prognosis,
hepatocellular carcinoma

1 Introduction

Hepatocellular carcinoma (HCC) is the most prevalent type

of liver cancer, the fourth leading cause of death among all

cancers, and its incidence is rising rapidly in recent years (Couri

and Pillai, 2019; Yang et al., 2019). In the past decades,

tremendous progress has been made in epidemiology, risk

factors, and molecular and genetic profiles of HCC,

contributing to the evolution of prevention, surveillance, early

diagnosis, and treatment (Huang et al., 2020; Petrick et al., 2020).

Surgical intervention, including surgical resection and liver

transplantation, is the best choice of treatment for patients

with early liver cancer and the only way to enable patients to

achieve long-term survival and even cure (Fan, 2012; Fonseca

and Cha, 2014). However, surgical intervention is restricted to a

small proportion of HCC patients with extremely specific clinical

characteristics (Forner et al., 2010). Since sorafenib, a molecularly

targeted drug for advanced HCC, was approved in 2007, the

research and development of cancer-targeted drugs have been a

hot topic worldwide (Cheng et al., 2009). Moreover, tumor

immunotherapy is in the ascendant, encouraging us to start a

new era of cancer treatment, mainly including programmed cell

death 1 (PD-1) and cytotoxic T lymphocyte-associated antigen 4

(CTLA-4) checkpoint inhibitors (Sangro et al., 2013; Chang Lee

and Tebbutt, 2019). As far as we know, the heterogeneity of the

HCC tumor microenvironment (TME) leads to different

therapeutic effects of targeted drugs and immunocheckpoint

inhibitors (ICIs) on HCC patients. Therefore, the molecular

profiling and subtype identification of HCC patients could

contribute to the efficacy of personalized treatment and

prognostic prediction.

Cell senescence is a process in which cells stop dividing or

lose their proliferative capacity, can be induced by a couple of

stresses such as the activation of oncogenes and DNA damage

caused by conventional chemotherapies/radiotherapies (Fei and

El-Deiry, 2003; Gewirtz et al., 2008; Ewald et al., 2010; Petrova

et al., 2016). Therefore, cell senescence was once considered a

defense mechanism against cancer because of its ability to

maintain a stable cell cycle arrest (Campisi, 2013). Tumor-

suppression characteristic of cell senescence has paved the

way for a novel idea that enhances the senescence in tumor

cells for cancer patients (Gertler et al., 2004; Collado et al., 2005;

Calcinotto and Alimonti, 2017). However, a growing number of

studies pointed out that cellular senescence caused genomic

perturbations and played a paradoxical role in

tumorigenesis, being both tumor-promoting and tumor-

suppressive (Perez-Mancera et al., 2014; Ruhland et al.,

2016; Ou et al., 2021). In terms of tumor-promoting,

senescent cancer cells remain metabolically active and

secrete multiple types of factors, such as cytokines,

chemokines, and proteases, known as the senescence-

associated secretory phenotype (SASP), which can induce

the proliferation of neighboring non-senescent cancer cells

(Kuilman et al., 2010; Jackson et al., 2012).
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Triggered by the p53 tumor suppressor, cellular senescence

has been recognized as a suppressive factor of HCC by inducing

the cell-autonomous program of cell-cycle arrest or apoptosis

(Kang et al., 2011; Lujambio et al., 2013). In line with the finding

that SASP can promote tumorigenesis by disturbing the tumor

immune microenvironment (TIME), several studies reported

that cellular senescence was capable of promoting HCC

progression (Yoshimoto et al., 2013; Ohtani, 2014; Huang

et al., 2021). In this study, we attempted to reveal the

influence of cellular senescence-related genes (CSGs) on the

prognosis of HCC, which would provide novel biomarkers for

CSGs-related prediction for the prognosis and therapeutic

response of HCC. With tumor-specific CSGs obtained from

the intersection between a senescence-related gene set and the

differentially expressed genes (DEGs) in the TCGA-LIHC

cohort, we used an unsupervised clustering method to

identify two CSGs-related subtypes with divergent clinical

outcomes in HCC. Next, LASSO (Least absolute shrinkage

and selection operator) Cox regression and random forest

were performed, and then TOP2A and KIF11 were found as

key indicators for CSGs-related subtype classification. Based

on the two subtypes, a five-gene scoring system called

“CSGscore” was established to predict the survival status in

HCC. We confirmed the reliability and robustness of

CSGscore for the prognostic prediction with internal and

external datasets. Moreover, we observed the potential of

CSGscore in predicting HCC patients’ response to

immunotherapy or chemo-/targeted therapy. The flowchart

of this study was shown in Figure 1.

2 Materials and methods

2.1 Data acquisition and preprocessing

We downloaded the gene expression files of 370 HCC and

50 adjacent normal tissues from the TCGA database (https://

portal.gdc.cancer.gov/) using the “TCGAbiolinks” package

(Colaprico et al., 2016). The corresponding

clinicopathologic characteristics and their survival

information including overall survival (OS), disease-free

survival (DFS), progression-free survival (PFS), and

disease-specific survival (DSS) were also gathered. The one-

class logistic regression (OCLR)-based mRNAsi and mDNAsi

for evaluating the differentiation degree from bulk sequencing

were obtained as previously described (Malta et al., 2018). For

survival-related analysis, 336 of 370 patients with the survival

time of >1 month were included (Cai et al., 2020; Guo et al.,

2022), which were divided into the training and validation

datasets with the ratio of 2:1 (222 vs. 114). The transcriptome

profiles and survival data of 238 HCC patients from the

International Cancer Genome Consortium (ICGC) database

(ICGC-LIRI-JP) were acquired to serve as the external

validation set. All data were normalized and processed as

previously reported (Guo et al., 2022; Tang et al., 2022).

1,259 cellular senescence-related genes (CSGs) including

525 positive CSGs and 734 negative CSGs were retrieved

from a recently published paper (Wang et al., 2022). All

the patient data used for model construction in the current

study were summarized in Supplementary Table S1.

FIGURE 1
Flowchart of this study.
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2.2 Identification of prognostic
differentially expressed CSGs (DECSGs)
and unsupervised clustering

Differentially expressed genes (DEGs) between HCC and

adjacent normal tissues were screened by using the “limma”

package (Ritchie et al., 2015), with the criteria cutoff of

adj.P.Val<0.01 and | logFC|>1. To balance the samples

between the tumor and normal groups, we utilized the subset-

based method as we previously described (Guo et al., 2021).

Generally, five subsets were randomly generated from the

tumor group with the sample size of 74, yielding a ratio of

1.48:1 for tumor and normal. The common DEGs in the five

subset-based analyses were obtained by plotting a Venn

diagram, which were further intersected with 1,259 CSGs

(Wang et al., 2022) to acquire the DECSGs in HCC.

Subsequently, Kaplan-Meier survival analysis and log-rank

test were used to identify the prognostic DECSGs for OS. To

enhance the stability, we adopted the “multi-split” approach

as we reported with some modifications (Tang et al., 2020;

Guo et al., 2022; Zhang et al., 2022). Next, the prognostic

DECSGs were utilized to perform unsupervised clustering for

the patients with complete survival information, and the R

package “ConsensusClusterPlus” was used to explore novel

CSG patterns of HCC (Wilkerson and Hayes, 2010; Wang

et al., 2021; Guo et al., 2022).

2.3 DEGs between HCC subtypes and
function enrichment

The package “limma” was utilized to screen the DEGs

between two CSG subtypes of HCC, followed by the

enrichment analysis of biological functions and pathways. The

“clusterProfiler” R package was applied to conduct the Gene

Ontology (GO) enrichment and the most significant terms were

visualized by using the “ggplot2” package. Meanwhile, the online

DAVID tool (https://david.ncifcrf.gov/tools.jsp) was used to

perform the Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathway analysis, and a network showing the most

significant enriched pathways was drawn by the package

“ggraph.”

2.4 Gene set variation analysis (GSVA) and
gene set enrichment analysis (GSEA)

The Gene set variation analysis process was completed to

calculate the enrichment scores of 50 hallmark gene sets of the

molecular signature database (Liberzon et al., 2015) for the

TCGA-LIHC cohort by the “GSVA” package (Hanzelmann

et al., 2013). Differential analysis was then performed by the

“limma” package to reveal the relative activities of these hallmark

pathways in the two CSG subtypes, which was determined by the

criterion of p < 0.01 combined with absolute t > 2.5 (Lambrechts

et al., 2018; Zhang et al., 2022). GSEA was further employed to

verify the GSVA results using the GSEA software with default

settings. The cutoff of FDR <0.25 was considered significant as

recommended (Zhang et al., 2022).

2.5 Building a CSG subtype predictor
in HCC

In this section, all 336 samples from the TCGA-LIHC cohort

were randomly classified into the training set (n = 222) and the

validation set (n = 114) at a ratio of 2:1, and the ICGC-LIRI-JP

dataset (n = 238) was selected as an external validation set. In the

training set, two feature selection algorithms suitable for high

dimensionality were applied to screen the most subtype-relevant

features: LASSO regression and the Random Forest. The

expression of the top 208 DEGs between two CSG subtypes

with the cutoff of |logFC| > 1.5 and adj.P.Val<0.01 was used as

the input variable and the CSG subtype status was used as the

binary outcome (0 or 1). For the LASSO selection operator, the

“multi-split” strategy was adopted to minimize the effect of

arbitrary choice in the random sample split process (Xu et al.,

2017; Luo et al., 2020). We subsampled 75% of the training

dataset 1,000 times and only those repeatedly occurred more

than 700 times were selected. Moreover, random forest was

carried out for variable elimination with the OOB error as the

minimization criterion. The intersecting genes were further

narrowed down by comparing them with the hub genes in

HCC that were reported before (Tang et al., 2020; Zhang

et al., 2021). Afterward, two overlapping critical genes were

used to fit a binary prediction model with multivariate logistic

regression analysis (Xu et al., 2017; Luo et al., 2020; Wang et al.,

2021). The discriminative performance of the CSG subtype

predictor was investigated by the receiver operating

characteristic (ROC) curves and the areas under the ROC

curve (AUCs) in the training and validation datasets. The

optimal cutoff value derived from the training set according

to the maximum Youden’s index was applied to the training and

validation datasets to generate the predicted outcomes and

confusion matrixes. Finally, the CSG subtypes for the external

dataset ICGC-LIHC-JP were predicted in a similar way and the

prognostic value of the CSG subtype was further validated.

2.6 Prognostic CSGs scoring system
(CSGscore) establishment

We examined the utility of the CSGs for the construction of a

prognostic CSGs scoring system with the aforementioned

prognostic DECSGs. Based on the TCGA training dataset, all

the 238 robust prognostic DECSGs were subjected to LASSO-
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COX and stepwise regression algorithms to generate the best

subset of prognostic genes, which were subsequently used to

build the prognostic CSGs signature: CSGscore = Σ(coef (β)
*EXPβ), where β indicates each selected prognostic DECSG.

Next, the CSGscores for the HCC patients in the training,

validation, and external dataset were computed, and all the

patients were categorized into the high- and low-risk groups

depending on the median CSGscores in the training set. Kaplan-

Meier survival curves and log-rank tests were used to compare

the divergent survival outcomes in both groups. Time-

dependent receiver operating characteristic (tROC) curves

were drawn to evaluate the predictive power of CSGscore.

Besides, stratified survival analysis was used to explore its

additional prognostic value in subgroups divided by

clinicopathologic variables.

Univariate and multivariate analyses were conducted to

verify the independent prognostic capacity of CSGscore. Based

on the results of Univariate analysis, a CSGscore-integrated

nomogram was established with the “rms” package.

Calibration curves were plotted to estimate the consistency

between predicted probabilities of 3- and 5-year survival and

actual ones. The decision curve analysis (DCA) curves at 1-, 3-,

and 5- years were depicted to compare the net benefits of the

nomogram and that of the pathologic stage or tumor burden

status. Kaplan-Meier analysis was further applied to test the

clinical relevance of the nomogram for OS, DFS, PFS,

and DSS.

2.7 Therapeutic sensitivities prediction by
CSGscore

Based on the whole TCGA-LIHC cohort, the potential role of

CSGscore in predicting the immunotherapeutic efficacy of HCC

was preliminarily assessed by comparing the gene expression of

50 immune checkpoint genes (ICGs) between distinct CSGscore

groups. Immunophenoscore (IPS) representing the tumor

immunogenicity of each sample was acquired from The

Cancer Immunome Atlas (TCIA) (https://tcia.at/home), and a

lower IPS stands for worse sensitivities to immunotherapy

(Charoentong et al., 2017). The tumor immune dysfunction

and exclusion (TIDE) score, which was designed to predict

the influences on survival and immunotherapeutic responses

based on two mechanisms of immune evasion: T-cell

exclusion and T-cell dysfunction (Jiang et al., 2018), was

computed with the expression profiles of the whole TCGA-

LIHC cohort and the ICGC-LIRI-JP dataset. Wilcoxon test

was used to compare the TIDE scores between the high- and

low- CSGscore groups, and Chi-square test was used to analyze

the ratio of responders or non-responders in both groups.

Meanwhile, the “pRRophetic” package was used to calculate

the semi-inhibitory concentration (IC50) values of 138 chemo/

targeted drugs (Geeleher et al., 2014).

2.8 Correlation of CSGscore with immune
infiltration

For the immune infiltration landscape, we utilized the

CIBERSORT algorithm (Newman et al., 2015) to estimate the

relative percentage of 22 tumor immune cell types based on

the whole TCGA-LIHC cohort. The tumor immune cell

infiltration for the high- and low-risk groups were

computed and presented with a heatmap. Spearman

correlation analysis was used to investigate the correlation

of immune cell infiltration and CSGscore as well as the

expression of CSGscore genes, followed by the visualization

of a correlation heatmap.

2.9 Comprehensive exploration of the
CSGscore genes

The innovative OCLR machine-learning algorithm-derived

stemness indices including mRNAsi and mDNAsi have

correlated with multiple clinical observations in malignant

tumors such as poor survival, tumor metastasis, and

therapeutic resistance (Malta et al., 2018; Wang et al., 2021;

Huang et al., 2022). Thus, we used the whole TCGA-LIHC

cohort to compare the mRNAsi and mDNAsi in the two

CSGscore risk groups by Wilcoxon test. Spearman

correlation analysis was then performed to validate the

relationship between each CSGscore gene and mRNAsi or

mDNAsi. The differential expression patterns of these

CSGscore genes were further verified by paired HCC and

non-cancerous tissue samples (n = 50). Finally, the correlation

of CSGscore genes’ expression and clinicopathologic

parameters including tumor grade, pathologic stage, tumor

burden status, and CSG subtype was also investigated via

boxplots.

2.10 Statistical analysis

Kaplan-Meier and log-rank tests were used to compare the

survival outcomes for OS, DFS, PFS, and DSS in different groups.

Wilcoxon test or Kruskal-Wallis test was used for the comparisons

of continuous variables in two or three groups. Correlation

coefficients and statistical significance were calculated by

Spearman correlation analysis. Pearson Chi-square test was

utilized to examine the distribution differences of categorical

variables. The R package “glmnet” and “randomForest” were

used to perform the LASSO and random forest algorithms for

dimensionality reduction. The “pROC” package was used to assess

the predictive accuracies for the CSG subtype predictor and the

“timeROC” package was used to determine the prognostic reliability

of the CSGs scoring system. All data visualization was completed in

RStudio (Version 1.1.383, https://www.rstudio.com/).

Frontiers in Molecular Biosciences frontiersin.org05

Tang et al. 10.3389/fmolb.2022.1100285

https://tcia.at/home
https://www.rstudio.com/
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2022.1100285


3 Results

3.1 Identification of CSG subtypes of HCC

Applying the “limma” package with the screening criteria of |

logFC| > 1 and adj.P.Val <0.01, we extracted 1997 overlapping

DEGs among five randomly subsampled subsets from TCGA-

LIHC dataset using the subset-based approach (Figures 2A,B).

Next, we intersected the previously reported 1,259 cellular

senescence genes (CSGs) with these 1997 DEGs to obtain

331 DEGs associated with CS (DECSGs) (Figure 2C).

Currently, a growing body of evidence has linked CS with

FIGURE 2
Identification of prognostic DECSGs and consensus clustering. (A) Screening of the DEGs in HCC with the subset-based approach. (B) Venn
diagram showing the 1997 DEGs shared by the five subset-based DEGs. (C) Venn diagram showing the 331 DECSGs in HCC. (D–F) Two subtypes of
HCC were recognized with 238 robust prognostic CSGs using unsupervised consensus clustering. (G) Kaplan-Meier survival plots of two CSG
subtypes for OS, DFS, PFS, and DSS. (H) The 238 gene profiles of two CSG subtypes with clinical traits. DECSGs, differentially expressed cellular
senescence genes; DEGs, differentially expressed genes; OS, overall survival; DFS, disease-free survival; PFS, progression-free survival; DSS, disease-
specific survival.
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FIGURE 3
Clinical significance and molecular characteristics of CSG patterns of HCC. (A) Proportions of subgroups divided by tumor stage, grade, tumor
burden, OS status, and progression status in different CSG subtypes. (B,C) GO (B) and KEGG (C) enrichment analysis of the DEGs between CSG
subtypes. (D,E) Significant hallmark pathways enriched by GSVA (D) and GSEA (E) between CSG subtypes. GO, gene ontology; KEGG, Kyoto
Encyclopedia of Genes and Genomes; GSVA, gene set variation analysis; GSEA, gene set enrichment analysis.
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cancer progression and metastasis, which in turn affects the

prognosis (Wang et al., 2022). Therefore, we screened the robust

DECSGs significantly correlated to the prognosis of HCC

patients by the “multi-split” method, and 238 DECSGs were

observed to be associated with prognosis in more than 990 of

1,000 subsamples (Supplementary Table S2), and by those genes,

two subtypes of HCCwere recognized by unsupervised clustering

analysis (Figures 2D–F, Supplementary Figure S1). Furthermore,

by utilizing Kaplan-Meier analysis, we found that patients in the

two subtypes had distinct clinical outcomes, and patients in

subtype 2 had a significantly shorter survival time than the

patients in subtype 1 (Figure 2G). We also exhibited the gene

profiles of the 238 DECSGs in the two HCC subtypes along with

clinical traits (Figure 2H).

3.2 Clinical significance and biological
functions of the CSG subtypes of HCC

Differential analysis of clinicopathologic characteristics between

the twoHCC subtypes from the TCGA-LIHC cohort was performed.

Notably, Chi-square test results showed significantly differential

sample distribution for pathologic stage, tumor grade, OS status,

and progression status of HCC concerning the defined CSG subtype.

(Figure 3A). More patients with advanced stage (35.5% vs. 18.8%),

high grade (50.7% vs. 25.9%), and poor progression status (61.1% vs.

44.9%)were clustered into subtype 2 than subtype 1, corresponding to

the poorer prognosis of subtype 2.

GO enrichment analysis revealed that themost significant terms

enriched by the DEGs between the two subtypes were the biological

process (BP) of DNA replication, cellular component (CC) of

chromosomal region, and molecular function (MF) of catalytic

activity acting on DNA (Figure 3B). For the KEGG enrichment

analysis, DEGs between the two CSG subtypes mostly participated

in the pathways of metabolic pathways and cell cycle (Figure 3C).

GSVA regarding hallmark gene sets was performed in the two HCC

subtypes. As Figure 3D shows, the CSG subtype 2 was significantly

associated with several cell cycle-related pathways such as G2M

checkpoint, E2F targets, and mitotic spindle pathway while those

from subtype 1 were associated with immune- and metabolism-

related pathways such as coagulation, xenobiotic metabolism, and

fatty acid metabolism pathway. Meanwhile, GSEA confirmed the

differences in hallmark pathways enriched in the twoHCC subtypes.

Similar to the results of GSVA analysis, we observed that multiple

cell cycle- and cancer-related pathways were more frequently

enriched in subtype 2 (Figure 3E).

3.3 Construction of CSGs-related subtype
predictor

Preliminary work inspired us to investigate potential

biomarkers with indicative roles in the classification of CSGs-

related HCC subtypes to achieve a precise and concise model for

CSG subtype categorization of HCC. We first picked out the top

208 of 784 DEGs between the two HCC subtypes with the cutoff

of |logFC| > 1.5 (Supplementary Table S3). Next, we conducted

LASSO regression and random forest with the 208 DEGs and

screened out nine and 14 variables, respectively. Five genes

(GINS1, TOP2A, KIF11, KIF2C, and MELK) were found in

common by both algorithms. Interestingly, TOP2A and

KIF11 were widely recognized as hub genes of HCC, which

were also presented to be strongly associated with the CSGs-

related subtype classification. Figure 4A outlined the screening

process of these two critical hub genes (TOP2A and KIF11),

which were further used to construct the CSGs-related subtype

predictor. Confusion matrixes showed that the expression of

TOP2A and KIF11 in HCC patients could precisely predict the

CSGs-related subtype in the TCGA training cohort (totally 217 of

222 samples were correctly predicted) and the TCGA validation

cohort (totally 109 of 114 samples were correctly predicted) and

ROC curves also demonstrated the reliability of the two-gene

subtype predictor (Figures 4B,C). Moreover, the confusion

matrix and ROC curve for the whole TCGA-LIHC cohort

were shown in Supplementary Figure S2. Additionally, we

performed CSG subtype prediction with the subtype predictor

for the ICGC-LIRI-JP dataset and 238 patients were successfully

classified into two groups with distinct OS status (Figures 4D,E).

3.4 Construction and validation of the
CSGscore model

To evaluate the capability of CSGs in the prognosis

prediction of HCC, the abovementioned 238 robust

prognostic DECSGs were applied as the input variables for

the LASSO-COX regression analysis to construct a prognostic

model, which resulted in 10 potential genes for the next

incorporation into the stepwise regression (Figure 5A). The

final model consisting of PSRC1, SOCS2, TMEM45A, CCT5,

and STC2 generated a minimal AIC value (AIC = 709.63).

Therefore, the final prognostic CSGscore risk model was

constructed with the five prognostic CSGs, whose coefficients

and significance levels in the model were shown in Figure 5B. To

evaluate the prognostic value of the CSGscore model for HCC, all

patients in the TCGA training set were classified into high- and

low-risk groups according to the median value of CSGscore

(0.9824545), and the CSGscore distribution, survival status,

and expression profile of HCC patients were exhibited

Figure 5C. As shown in Figure 5D, Kaplan-Meier analysis

showed that high-risk patients had exceedingly lower OS rates

relative to low-risk patients in the TCGA training cohort. The

time-dependent receiver operating characteristic curve showed

the area under the ROC curve (AUC) of 0.871, 0.801, and 0.784 in

1-year, 3-year, and 5-year OS, respectively, suggesting the high

accuracy of CSGscore for OS prediction (Figure 5E). Moreover,
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we also found the high-risk group had a worse prognosis for DFS,

PFS, and DSS (Figures 5F–H). Notably, stratified analysis

indicates the CSGscore signature could recognize different risk

status significantly in all subgroups divided by clinicopathologic

parameters, which denotes its good potential and clinical

application to exert additional prognostic value to existing risk

factors (Supplementary Figure S3).

To validate the stability and robustness of CSGscore for OS

prediction, we adopted the TCGA-validation dataset and the

whole TCGA cohort as internal validation sets and chose the

ICGC-LIRI-JP dataset as an external set. Using the same cutoff

value that was derived from the training set (0.9824545), all

patients in each validation set were categorized into high- and

low-risk groups. As Figure 6 shown, the CSGscore was

consistent in predicting the prognosis of HCC in all of them,

and CSGscore-defined high-risk patients had a significantly

worse prognosis than the low-risk group.

The correlation between CSGscore and clinicopathologic

features was subsequently explored. As presented in Figure 7A

and Supplementary Figure S4, the CSG subtype, tumor burden,

stage, and tumor grade were significantly related to CSGscore,

while other clinical characteristics showed no significant

association with CSGscore.

3.5 CSGscore-integrated nomogram
establishment

The accurate preoperative prediction of OS might help

surgeons to make better clinical decisions and comprehensive

FIGURE 4
Construction and evaluation of the CSG subtype predictor of HCC. (A) Workflow for building the CSG subtype predictor. (B,C) Confusion
matrixes and ROC curves of the CSG subtype predictor for the binary classification in the TCGA training (B) and validation (C) datasets. (D)
Unsupervised hierarchical clustering of the two selected hub genes in the CSG subtype predictor for the ICGC-LIRI-JP dataset. (E) Kaplan-Meier
survival plots showing the significantly different OS between the two CSG subtypes.
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FIGURE 5
Construction and evaluation of the CSGs scoring system (CSGscore) of HCC based on the TCGA training dataset. (A) LASSO-COX was applied
to identify 10 potential genes, followed by the stepwise method to select the final five of them for the construction of the CSGs scoring system. (B)
Forest plot showing the coefficients and significant levels of the five CSGscore genes in the model. (C) Patients in the TCGA training set were
classified into the high- and low-risk groups according to the median value of CSGscores, and (C) shows the distribution of their CSGscores,
survival status, and the expression profile of the five CSGscore genes. (D,E) The Kaplan-Meier survival plots (D) and tROC curves (E) for the OS of
CSGscore in the training dataset. (F–H) The Kaplan-Meier survival plots of CSGscore for the DFS, PFS, and DSS of HCC.
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FIGURE 6
Validation of the prognostic value of CSGscore in HCC. (A–C) The left panels indicate the distribution of CSGscore, survival status, and the
expression of the five CSGscore genes in the TCGA validation set (A), the whole TCGA cohort (B), and the ICGC-LIRI-JP dataset (C). The middle and
right panels indicate the Kaplan-Meier survival plots (themiddle panels) and the tROC (the right panels) of CSGscore for theOS of the TCGA validation
set (A), the whole TCGA cohort (B), and the ICGC-LIRI-JP dataset (C).
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FIGURE 7
Integration of clinicopathologic characteristics and CSGscore to construct the nomogram. (A) Comparison of CSGscore distribution based on
clinicopathologic parameters using the whole TCGA cohort. (B) Univariate and multivariate analysis of CSGscore and other clinicopathologic traits
based on the whole TCGA cohort. (C) The CSGscore-integrated nomogram. (D) Calibration curves of the nomogram. (E–G)Decision curve analysis
(DCA) plot of the nomogram for 1-year (E), 3-year (F), and 5-year (G)OS prediction. (H) Kaplan-Meier curves of the nomogram for the OS, DFS,
PFS, and DSS of HCC. *p < 0.05, **p < 0.01, ***p < 0.001, and ns indicates no significance.
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FIGURE 8
The potential role of CSGscore in predicting immunotherapeutic efficiency and correlation analysis of CSGscore genes and TME cell infiltration.
(A) The discrepancy of the gene expression of ICGs in two risk groups of the whole TCGA cohort. (B) Differences of IPS scores between the two risk
groups of the whole TCGA cohort. (C) Comparison of TIDE scores between the high- and low-risk groups in the whole TCGA cohort and the ICGC-
LIRI-JP dataset. (D) The proportions of predicted responders or non-responders in the high- and low-risk groups of the whole TCGA cohort
and the ICGC-LIRI-JP dataset. (E) The correlation matrix of the five CSGscore genes, CSGscore, and the abundance of 22 immune cell types. *p <
0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, and ns indicates no significance.
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nomograms can be used for the combined diagnosis or disease

status prediction with multiple indicators. In this situation,

accuracy was of the essence, so we were prompted to

construct a novel nomogram combing the CSGscore model

and multiple clinicopathologic traits to constitute a

quantitative tool for predicting the clinical outcomes of HCC

patients. While univariate analysis identified the CSGscore

classifier, stage, CSG subtype, and tumor burden were

prognostic variables, in multivariate analysis, only CSGscore

and tumor stage were proved to be independent prognostic

indicators for HCC (Figure 7B). Afterward, by integrating the

prognostic factors including CSGscore, stage, tumor burden, and

CSG subtypes, we established an integrative nomogram to

predict the 1-, 3-, and 5-year OS of HCC patients

(Figure 7C). Well-fitted calibration curves demonstrated that

the nomogram had excellent consistency between the predicted

and observed 3- and 5-year OS (Figure 7D). Moreover, The 1-, 3-,

and 5-year DCA curves showed that the CSGscore-integrated

nomogram could yield better net benefits compared with other

indices for the vast majority of threshold probabilities (Figures

7E–G). Importantly, Kaplan-Meier analyses of OS, DFS, PFS, and

DSS for low- and high-risk HCC patients classified by the median

value of the nomogram score suggested that the CSGscore-

integrated nomogram was a utilizable tool in evaluating the

prognosis of HCC patients (Figure 7H).

3.6 CSGscore correlates with tumor
immune infiltration and therapeutic
responses

Ongoing efforts are being made to decipher the interplay

between cellular senescence and immune response in the tumor

microenvironment to determine whether senescence changes the

role of the immune system from anti-tumor to pro-tumor

response. In this context, we eagerly mined the potential

correlation between CSGscore and the tumor immune

microenvironment of HCC. We found most of the immune

checkpoint genes (ICGs) were highly expressed in the

CSGscore-defined high-risk group compared to the low-risk

group (Figure 8A). Moreover, Immunophenoscore (IPS), an

index to measure the overall immunogenicity of tumors with

machine learning, was designed to predict patients’ response to

immunocheckpoint inhibitors (ICIs) therapy, and a higher IPS

was representative of a more immunogenic tumor. As Figure 8B

shows, in the whole TCGA-LIHC cohort, the low-risk patients

had higher scores of IPS, IPS-CTLA4, and PD1/PD-L1/PD-

L2 blocker than high-risk patients, which demonstrated that

low-risk patients had higher sensitivity to ICIs therapy. Also, we

performed TIDE scoring on patients in the TCGA-LIHC cohort

and the ICGC-LIRI-JP dataset, both of which showed the low-

risk patients had significantly lower TIDE scores and a higher

proportion of predicted responders (Figures 8C,D). By the

CIBERSORT algorithm, we calculated the correlation matrix

of the expression levels of the five CSGscore genes and

22 immune cells, respectively. Interestingly, we found that the

CSGscore genes were all significantly associated with the

M0 macrophage infiltration, positively or negatively in HCC,

corresponding to their hazard ratio of them inside the model

(Figure 8E). The relative abundance of the 22 immune cell types

for the whole TCGA cohort was also shown in Supplementary

Figure S5.

In addition, we evaluated the potential application of

CSGscore for predicting the HCC patients’ responses to

chemo-/targeted therapy. The IC50 values of 138 chemo-/

targeted drugs were calculated by “pRRophetic”

algorithm for HCC patients and 10 common chemo/

targeted drugs were selected to show the different IC50

values of them in low- and high-CSGscore groups

(Supplementary Figure S6).

3.7 Comprehensive analysis of the
CSGscore genes

Significant correlations of cellular senescence levels with

tumor stemness have been reported previously (Wang et al.,

2022), thus, we suppose the statistical linkage between CSGscore

and stemness indices. As shown in Figure 9A and Figure 9B,

mRNAsi and mDNAsi both showed significantly different

between the low- and high-risk groups, and we noticed that

patients in the high-risk group had higher tumor stemness

indices, suggesting a worse prognosis in patients with a higher

stemness level. Specifically, four CSGscore genes (STC2, SOCS2,

CCT5, and PSRC1) were found significantly correlated with

mRNAsi while three CSGscore genes (SOCS2, STC2, and

TMEM45A) had significant correlations with mDNAsi

(Figures 9C,D). Further, we validated the differential

expression of the five signature genes with paired boxplots

using the TCGA-LIHC dataset (Figure 9E). To seek the

clinical relevance of the CSGscore, we analyzed their

expression levels according to tumor grade, pathologic stage,

tumor status, and CSG subtype. Consequently, most of them

showed statistical differences in different subgroups of tumor

grade and pathologic stage (Figures 9F,G), implying that they

may good indicators for tumor progression. While only

TMEM45A was associated with tumor burden status, all of

the five signature genes were strongly related to CSG subtypes

(Supplementary Figure S7), suggesting their close relationships

with the CSG patterns of HCC.

4 Discussions

In recent years, numerous studies have identified the

carcinogenic properties of cellular senescence, contrary to
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previous perceptions of it (Ruhland et al., 2016; Calcinotto and

Alimonti, 2017). What role cellular senescence plays in the

tumorigenesis and development of HCC is far from fully

understood. Here, we first identified 238 robust prognostic

DECSGs by intersecting DEGs obtained from the TCGA-

LIHC cohort with 1,259 CSGs published by a previous study,

FIGURE 9
Comprehensive analysis of the five CSGscore genes using the TCGA-LIHC dataset. (A,B) Comparison of mRNAsi (A) and mDNAsi (B) between
the high- and low- CSGscore risk groups. (C,D) Spearman correlations of the expression of CSGscore genes and mRNAsi (C) or mDNAsi (D). Only
significant results are shown. (E) Validation of the differential expression of the five CSGscore genes between the tumor and normal tissues with
paired boxplots. (F,G) Comparison of the expression of the five CSGscore genes between subsets of stage and tumor grade.
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as well as the “multi-split” selection. Based on these prognostic

DECSGs, 336 HCC patients were categorized into two subtypes

with distinct survival outcomes and functional characteristics.

Subsequently, a CSG subtype predictor was successfully

established with two hub genes (TOP2A and KIF11). Then,

we proposed a novel CSGs-related prognostic model with five

prognostic CSGs: CSGscore, to predict the OS and therapeutic

response of HCC.

In the present study, we identified two CSGs-related subtypes of

HCC via consensus clustering, and subtype 2 exhibited a

significantly larger percentage of HCC patients with a high grade

or pathologic stage together with a worse survival outcome. GO and

KEGG enrichment analysis demonstrated that the most remarkable

differences in the functional characteristics of the two subtypes were

cell cycle and metabolic pathways, an observation that was

strengthened by GSVA and GSEA analysis, both of which

revealed that subtype 2 mainly enriched in G2M checkpoint and

E2F targets pathways while subtype 1 mainly enriched in multiple

metabolism pathways. Thus, the categorization of CSG subtypes

corresponds to two dimensions molecularly: cell cycle and

metabolism. As well-recognized hallmarks of cancer, cell cycle

and metabolism are inextricably linked (Liu et al., 2021b; Wiley

and Campisi, 2021). In cancer biology, G2M checkpoint is a

hallmark halting the cell cycle in order to repair DNA damage,

and its dysregulation is an important contributor to carcinogenesis

(Dasika et al., 1999; Bartek and Lukas, 2003). E2F transcription

factors and their target genes form a pathway that regulates cell

proliferation, and their misexpression leads to the promotion of

tumorigenesis (Kent and Leone, 2019). Next, we were prompted to

construct a precise and concise predictor for CSGs-related subtypes.

With the combination of LASSO regression and random forest, we

found that the expression of two key genes (TOP2A and KIF11)

could be used to predict the CSG subtype with high accuracies both

in the training set and the validation set. Based on the established

predictive model, the CSG subtypes for the ICGC-LIRI-JP dataset

were further identified, and differential survival outcomes were

observed in the two subtypes. TOP2A is an isoform of the

Topoisomerase II (TOP2), typically expressing at high levels in

rapidly proliferating and growing cells, especially tumor cells, in

which overexpression of TOP2A is associated with poor clinical

outcomes (Zhao et al., 2008; Liu et al., 2019a). Similar to TOP2A,

KIF11, acting as an oncogene that promotes the proliferation of

tumor cells, is negatively correlated with decreased overall survival

(Jungwirth et al., 2021; Wei et al., 2021a). To this point, we found a

novel transcriptional subtype classification of HCC using critical

CSGs as the mediators.

To deeply investigate the clinical value of CSGs in HCC, we

performed LASSOCox regression analysis to identify five vital genes

(PSRC1, SOCS2, TMEM45A, CCT5, and STC2) from 238 robust

prognostic DECSGs, which were subsequently employed to

construct the CSGscore risk signature as a scoring system for

HCC prognostic prediction. The following validation of the

internal and external validation datasets revealed that patients in

the high-risk group defined by CSGscore were proved to have a

worse prognosis. Among these CSGscore genes, PSRC1,

TMEM45A, CCT5, and STC2 were high-risk factors, while

SOCS2 was a protective factor. A few studies reported that

PSRC1 was a key gene in cancer. For instance, Wei et al.

identified PSRC1 as a poor prognostic gene in HCC (Wei et al.,

2021b), and Mange et al. (2012) found PSRC1 participating in the

progression of breast cancer. In HCC, the expression of PSRC1 was

found to be positively associated with cell proliferation and tumor

development (Meroni et al., 2021). TMEM45A, a transmembrane

protein, which has been proposed as a biomarker of clear cell renal

cell carcinoma (ccRCC), was also reported to be associated with

chemoresistance in breast cancer and HCC cells (Flamant et al.,

2012; Wrzesinski et al., 2015). Recently, a study reported that

CCT5 induced epithelial-mesenchymal transition (EMT) to

promote gastric cancer lymph node metastasis, and another

study reported it promoted lung adenocarcinoma cell migration

and invasion (Meng et al., 2021; Li et al., 2022). Similarly,

CCT5 overexpression could promote the proliferation, migration,

and G1–S transition in HCC cell lines (Liu et al., 2021a). Belonging

to a conserved, secreted glycoprotein hormone family, STC2 plays a

critical role in regulating the homeostasis of calcium, glucose

homeostasis, and phosphorus metastasis (Takei et al., 2012; Qie

and Sang, 2022). The dysregulation of STC2 was reported as amajor

risk factor of EGFR tyrosine kinase inhibitor (TKI) resistance in

non-small cell lung cancer (NSCLC) and a predictive marker for

lymph nodemetastasis in esophageal squamous cell carcinoma (Kita

et al., 2011; Liu et al., 2019b). Consistent with our study, a

remarkable work completed by Chen et al. (2022) found that

SOCS2 promoted ferroptosis and radio sensitization in HCC

thus improving the prognosis of HCC patients. Importantly,

univariate and multivariate analyses confirmed that CSGscore

was an independent factor for the prediction of HCC patients’

clinical outcomes. The integrated nomogram, composed of

CSGscore, stage, tumor burden, and CSG subtype, was

subsequently developed and showed great potential as an ideal

quantitative tool to predict 1-, 3-, and 5-year OS in HCC patients.

In advanced HCC, immunotherapies have rapidly evolved in

recent years, and most of them focused on monoclonal antibodies

against CTLA-4 and PD-1 that block immune checkpoints

pathways to reactivate the tumor-killing activity of immune cells

in the TME (Cho et al., 2017; Seidel et al., 2018). Although various

immunotherapeutic clinical trials have been conducted for HCC,

there are still insufficient convincing biomarkers as indicators of

therapeutic effects and prognosis. So we explored whether the

CSGscore system could classify HCC patients with different

intrinsic TME immunity. Encouragingly, the expression levels of

almost all ICGswere lower in low-riskHCCpatients, indicating that

they had a more favorable TIME. IPS and TIDE analyses also

validated that the low-risk group had significantly higher sensitivity

to anti-CTLA-4 and anti-PD1/PD-L1 immunotherapies. Besides, all

five CSGscore genes were found strongly associated with

M0 macrophage infiltration in TIME of HCC and the
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correlation was consistent with the risk coefficient, which might

help explain the immune regulatory mechanism for the risk

categorization of CSGscore. We virtually computed the

IC50 values of 138 chemo/targeted drugs in the two-risk groups

and revealed that patients of the low-risk group might respond

better to more chemo/targeted drugs than the high-risk

group. These results raise the possibility that CSGscore might be

a reliable signature in predicting therapeutic response to aid

personalized medicine for HCC.

It is well known that cancer stem cells (CSCs) contribute to a

high rate of cancer recurrence, as well as resistance to

radiotherapy or chemotherapy (Lee et al., 2013). To dig

deeper into the performance of the model, we performed

correlation analyses between CSGscore and two stemness

indices, mRNAsi and mDNAsi, respectively. It turned out that

high-risk patients had higher stemness, implying that CSGscore

was associated with the stemness in HCC and the signature genes

were well worth continued research in the future.

Taken together, we comprehensively evaluated the cellular

senescence patterns in HCC and proposed a novel CSG subtype

classification system with clinical significance. A CSG subtype

predictor was successfully established with high accuracy. In

addition, we constructed a novel CSGs-based prognostic

signature - CSGscore, which was proved to be a robust and

precise indicator for the prediction of OS and therapeutic

responses. The correlations of CSGscore genes and immune

cell infiltration might advance the dynamic interplay between

TIME and cellular senescence in different subgroups of HCC.

Finally, the integrative analysis of the CSGscore genes also

suggests they are of great importance in the process of tumor

progression and represents a promising direction for novel

biomarker development of HCC.
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