132 research outputs found

    The effect of tourists’ technology adoption propensity on the acceptance of smart tourism apps

    Get PDF
    STA are becoming popular as tourists’ increasing relies on mobile devices in their trip to explore the destination. Therefore, the adoption of STA is crucial to the development of smart tourism. Extant literature mainly focuses on the application of different technology acceptance models. This study explores the impact of tourists’ attitude about technology on their intention to use STA. The technology adoption propensity (TAP) scale was used to measure the technology readiness of tourists in this study. A survey with a structured questionnaire was used to collect data in this study. The respondents were asked to study the introduction of a STA similar to those displayed on an App store and then complete the questionnaire. A total of 355 valid questionnaires were collected. The data were analyzed using the Partial least-squares method (PLS). Since TAP is a multi-dimensional scale, a second-order analysis was performed. From the TAP measures, tourists generally believe that technology changes and improve their daily lives, making their lives easier. However, technology is a double-edged sword, which will bring some adverse effects while improving the tourist's living standard. The result of the path analysis reveals that all the hypotheses proposed in this study are valid. The TAP of tourists has a positive influence on usage intention with trust and curiosity as two partial mediating variables. TAP has a stronger influence on the tourists' curiosity than trust, and curiosity has a stronger effect on tourists’ intentions to use STA than trust. Tourists with higher TAP will plead to increased curiosity about STA, that will prompt them to try, understand, and continue using the STA. The higher the tourists’ trust in the STA, the more willing they would choose and use STA

    Grapevine leafroll-associated virus 2 and grapevine 'Pinot gris' virus are present in seedlings developed from seeds of infected grapevine plants

    Get PDF
    Nearly 80 different viruses belonging to different genera and families have been identified in grapevines, but their seed transmissibility remains largely unclear. Thus, the specific objective of this work is to monitor the presence of viruses in seedlings grown from seeds of virus-infected grapevine plants. Using reverse-transcription polymerase chain reaction (RT-PCR) and quantitative real-time RT-PCR, we showed the presence of grapevine leafroll-associated virus 2 (GLRaV-2), GLRaV-3, grapevine 'Pinot gris' virus (GPGV), grapevine rupestris stem pitting-associated virus (GRSPaV), grapevine virus A (GVA), and grapevine fleck virus (GFkV) in all tested parts including mature cane, leaf, petiole, young shoot, flower, berry skin, and seed of infected grapevine 'Moldova' plants. Furthermore, GLRaV-2 and GPGV were found in all tested seedlings developed from seeds of 'Moldova' plants, while the other four viruses were not detected. Our results provide the first evidence that GLRaV-2 and GPGV can be transmitted to progeny seedlings from seeds of infected grapevine plants

    A new extended matrix KP hierarchy and its solutions

    Full text link
    With the square eigenfunctions symmetry constraint, we introduce a new extended matrix KP hierarchy and its Lax representation from the matrix KP hierarchy by adding a new τB\tau_B flow. The extended KP hierarchy contains two time series tA{t_A} and τB{\tau_B} and eigenfunctions and adjoint eigenfunctions as components. The extended matrix KP hierarchy and its tAt_A-reduction and τB\tau_B reduction include two types of matrix KP hierarchy with self-consistent sources and two types of (1+1)-dimensional reduced matrix KP hierarchy with self-consistent sources. In particular, the first type and second type of the 2+1 AKNS equation and the Davey-Stewartson equation with self-consistent sources are deduced from the extended matrix KP hierarchy. The generalized dressing approach for solving the extended matrix KP hierarchy is proposed and some solutions are presented. The soliton solutions of two types of 2+1-dimensional AKNS equation with self-consistent sources and two types of Davey-Stewartson equation with self-consistent sources are studied.Comment: 17 page

    Alteration of gastric microbiota and transcriptome in a rat with gastric intestinal metaplasia induced by deoxycholic acid

    Get PDF
    ObjectiveBile reflux plays a key role in the development of gastric intestinal metaplasia (GIM), an independent risk factor of gastric cancer. Here, we aimed to explore the biological mechanism of GIM induced by bile reflux in a rat model.MethodsRats were treated with 2% sodium salicylate and allowed to freely drink 20 mmol/L sodium deoxycholate for 12 weeks, and GIM was confirmed by histopathological analysis. Gastric microbiota was profiled according to the 16S rDNA V3–V4 region, gastric transcriptome was sequenced, and serum bile acids (BAs) were analyzed by targeted metabolomics. Spearman's correlation analysis was used in constructing the network among gastric microbiota, serum BAs, and gene profiles. Real-time polymerase chain reaction (RT-PCR) measured the expression levels of nine genes in the gastric transcriptome.ResultsIn the stomach, deoxycholic acid (DCA) decreased the microbial diversity but promoted the abundances of several bacterial genera, such as Limosilactobacillus, Burkholderia–Caballeronia–Paraburkholderia, and Rikenellaceae RC9 gut group. Gastric transcriptome showed that the genes enriched in gastric acid secretion were significantly downregulated, whereas the genes enriched in fat digestion and absorption were obviously upregulated in GIM rats. The GIM rats had four promoted serum BAs, namely cholic acid (CA), DCA, taurocholic acid, and taurodeoxycholic acid. Further correlation analysis showed that the Rikenellaceae RC9 gut group was significantly positively correlated with DCA and RGD1311575 (capping protein-inhibiting regulator of actin dynamics), and RGD1311575 was positively correlated with Fabp1 (fatty acid-binding protein, liver), a key gene involved in fat digestion and absorption. Finally, the upregulated expression of Dgat1 (diacylglycerol acyltransferase 1) and Fabp1 related to fat digestion and absorption was identified by RT-PCR and IHC.ConclusionDCA-induced GIM enhanced gastric fat digestion and absorption function and impaired gastric acid secretion function. The DCA–Rikenellaceae RC9 gut group–RGD1311575/Fabp1 axis might play a key role in the mechanism of bile reflux-related GIM

    The effect of water temperature on the pathogenicity of decapod iridescent virus 1 (DIV1) in Litopenaeus vannamei

    Get PDF
    Decapod iridescent virus 1 (DIV1) has caused huge losses to the shrimp breeding industry in recent years as a new shrimp virus. In this study, white leg shrimp, Litopenaeus vannamei, were cultured at different temperatures (26 ± 1 °C and 32 ± 1 °C) and the same salinity, then infected with DIV1 by intramuscular injection to determine the effects of water temperature on viral infection. The DIV1 copy counts in the gills, hepatopancreas, pleopods, intestines, and muscles of L. vannamei were measured in samples collected at 6, 12, and 24 h post-infection (hpi), and the survival rate of L. vannamei was assessed every 6 h after infection. At 96 hpi, the survival rates of L. vannamei in the high (32 ± 1 ℃) and standard (26 ± 1 ℃) water temperature groups were 2.22% and 4.44%, respectively. The peak time of mortality in the high-water temperature group was 6 h earlier than in the standard water temperature group. After 24 hours of DIV1 infection, the DIV1 copy counts in the standard water temperature treatment group were significantly higher than those in the high-water temperature treatment group. The tissues with the highest virus copy counts in the standard and high-temperature groups were the intestines (2.9×1011 copies/g) and muscles (7.0×108 copies/g). The effect of temperature on the pathogenicity of DIV1 differs from that of other previously studied viruses, such as white spot syndrome virus, Taura syndrome virus, and infectious hypodermal and hematopoietic necrosis virus, because the high-water temperature did not mitigate the damage caused by DIV1 infection

    A first generation integrated map of the rainbow trout genome

    Get PDF
    Background Rainbow trout (Oncorhynchus mykiss) are the most-widely cultivated cold freshwater fish in the world and an important model species for many research areas. Coupling great interest in this species as a research model with the need for genetic improvement of aquaculture production efficiency traits justifies the continued development of genomics research resources. Many quantitative trait loci (QTL) have been identified for production and life-history traits in rainbow trout. An integrated physical and genetic map is needed to facilitate fine mapping of QTL and the selection of positional candidate genes for incorporation in marker-assisted selection (MAS) programs for improving rainbow trout aquaculture production. Results The first generation integrated map of the rainbow trout genome is composed of 238 BAC contigs anchored to chromosomes of the genetic map. It covers more than 10% of the genome across segments from all 29 chromosomes. Anchoring of 203 contigs to chromosomes of the National Center for Cool and Cold Water Aquaculture (NCCCWA) genetic map was achieved through mapping of 288 genetic markers derived from BAC end sequences (BES), screening of the BAC library with previously mapped markers and matching of SNPs with BES reads. In addition, 35 contigs were anchored to linkage groups of the INRA (French National Institute of Agricultural Research) genetic map through markers that were not informative for linkage analysis in the NCCCWA mapping panel. The ratio of physical to genetic linkage distances varied substantially among chromosomes and BAC contigs with an average of 3,033 Kb/cM. Conclusions The integrated map described here provides a framework for a robust composite genome map for rainbow trout. This resource is needed for genomic analyses in this research model and economically important species and will facilitate comparative genome mapping with other salmonids and with model fish species. This resource will also facilitate efforts to assemble a whole-genome reference sequence for rainbow trout

    An Oligodeoxynucleotide with Promising Modulation Activity for the Proliferation and Activation of Osteoblast

    Get PDF
    The paper explored the regulatory role of oligodeoxynucleotides (ODNs) with specific sequences in the proliferation and activation of osteoblast, using human osteoblast-like cell line MG 63 as the model. Through the administration of ODNs to MG 63 cells at a concentration of 1.0 μg/mL, ODN MT01 with positive effects on proliferation and activation of osteoblast was selected from 11 different ODNs by methyl thiazolyl tetrazolium (MTT) assay and alkaline phosphatase (ALP) activity measurement. To get a deeper insight into the molecular mechanism, effects of ODN MT01 treatment on the expression level of Sp7, runx-2, collagen-I, osteoprotegerin (OPG) and RANK ligand (RANKL) were determined using quantitative real time PCR and Western blotting. Remarkably, the mRNA and protein expression levels of Sp7, runx-2, collagen-I and OPG were improved after ODN MT01 treatment. Meanwhile, the protein expression level of RANKL was dramatically decreased. These results suggested that ODN MT01 had a significant impact in facilitating osteogenic proliferation and activation, and provided a direct evidence for the notion that single strand ODN could regulate the balance of bone formation and resorption, and thus was of great potential in the rebuilding of alveolar bone

    Exocyclic amino groups of flanking guanines govern sequence-dependent adduct conformations and local structural distortions for minor groove-aligned benzo[a]pyrenyl-guanine lesions in a GG mutation hotspot context

    Get PDF
    The environmental carcinogen benzo[a]pyrene (BP) is metabolized to reactive diol epoxides that bind to cellular DNA by predominantly forming N(2)-guanine adducts (G*). Mutation hotspots for these adducts are frequently found in 5′- ··· GG ··· dinucleotide sequences, but their origins are poorly understood. Here we used high resolution NMR and molecular dynamics simulations to investigate differences in G* adduct conformations in 5′- ··· CG*GC ··· and 5′- ··· CGG* C··· sequence contexts in otherwise identical 12-mer duplexes. The BP rings are positioned 5′ along the modified strand in the minor groove in both cases. However, subtle orientational differences cause strong distinctions in structural distortions of the DNA duplexes, because the exocyclic amino groups of flanking guanines on both strands compete for space with the BP rings in the minor groove, acting as guideposts for placement of the BP. In the 5′- ··· CGG* C ··· case, the 5′-flanking G · C base pair is severely untwisted, concomitant with a bend deduced from electrophoretic mobility. In the 5′- ··· CG*GC ··· context, there is no untwisting, but there is significant destabilization of the 5′-flanking Watson–Crick base pair. The minor groove width opens near the lesion in both cases, but more for 5′- ··· CGG*C···. Differential sequence-dependent removal rates of this lesion result and may contribute to the mutation hotspot phenomenon
    corecore