251 research outputs found

    Establishment and evaluation of a predictive model for length of hospital stay after total knee arthroplasty: A single-center retrospective study in China

    Get PDF
    BackgroundTotal knee arthroplasty (TKA) is the ultimate option for end-stage osteoarthritis, and the demand of this procedure are increasing every year. The length of hospital stay (LOS) greatly affects the overall cost of joint arthroplasty. The purpose of this study was to develop and validate a predictive model using perioperative data to estimate the risk of prolonged LOS in patients undergoing TKA.MethodsData for 694 patients after TKA collected retrospectively in our department were analyzed by logistic regression models. Multi-variable logistic regression modeling with forward stepwise elimination was used to determine reduced parameters and establish a prediction model. The discrimination efficacy, calibration efficacy, and clinical utility of the prediction model were evaluated.ResultsEight independent predictors were identified: non-medical insurance payment, Charlson Comorbidity Index (CCI) ≥ 3, body mass index (BMI) > 25.2, surgery on Monday, age > 67.5, postoperative complications, blood transfusion, and operation time > 120.5 min had a higher probability of hospitalization for ≥6 days. The model had good discrimination [area under the curve (AUC), 0.802 95% CI, 0.754–0.850]] and good calibration (p = 0.929). A decision curve analysis proved that the nomogram was clinically effective.ConclusionThis study identified risk factors for prolonged hospital stay in patients after TKA. It is important to recognize all the factors that affect hospital LOS to try to maximize the use of medical resources, optimize hospital LOS and ultimately optimize the care of our patients

    A Metabolomics Profiling Study in Hand-Foot-and-Mouth Disease and Modulated Pathways of Clinical Intervention Using Liquid Chromatography/Quadrupole Time-of-Flight Mass Spectrometry

    Get PDF
    Hand-foot-and-mouth disease (HFMD), with poorly understood pathogenesis, has become a major public health threat across Asia Pacific. In order to characterize the metabolic changes of HFMD and to unravel the regulatory role of clinical intervention, we have performed a metabolomics approach in a clinical trial. In this study, metabolites profiling was performed by liquid chromatography/quadrupole time-of-flight mass spectrometry (LC-Q-TOF-MS) platform from the HFMD clinical patient samples. The outcome of this study suggested that 31 endogenous metabolites were mainly involved and showed marked perturbation in HFMD patients. In addition, combination therapy intervention showed normalized tendency in HFMD patients in differential pathway. Taken together, these results indicate that metabolomics approach can be used as a complementary tool for the detection and the study of the etiology of HFMD

    The reversible effects of free fatty acids on sulfonylurea-stimulated insulin secretion are related to the expression and dynamin-mediated endocytosis of KATP channels in pancreatic β cells

    Get PDF
    Objective: Lipotoxicity-induced pancreatic β cell-dysfunction results in decreased insulin secretion in response to multiple stimulus. In this study, we i nvestigated the reversible effects of palmitate (PA) or oleate (OA) on insulin secretion and the relationship with pancreatic β-cell ATP-sensitive potassium (KATP) channels. Methods: MIN6 cells were treated with PA and OA for 48 h and then washed out for 24 h to determine the changes in expression and endocytosis of the KATP channels and glucose-stimulated insulin secretion (GSIS) and sulfonylurea-stimulated insulin secretion (SU-SIS). Results: MIN6 cells exposed to PA or OA showed both impaired GSIS and SU -SIS; the former was not restorable, while the latter was reversible with washout of PA or OA. Decreased expressions of both total and surface Kir6.2 and SUR1 and endocytosis of KATP channels were observed, which were also recoverable after wash out. When MIN6 cells exposed to free fatty acids (FFAs) were cotreated wi th 5-aminoimidazole- 4-carboxamide ribonucleotide (AICAR) or dynasore, we found that endocytosis of KATP channels did not change significantly by AICAR but was almost co mpletely blocked by dynasore. Meanwhile, the inhibition of endocytosis of K ATP channels after washout could be activated by PIP2. The recovery of SU-SIS after washout was significantly weakened by PIP2, but the decrease of SU-SIS induced by FFAs was not allevi ated by dynasore. Conclusions: FFAs can cause reversible impairment of SU-SIS on pancreatic β cells. The reversibility of the effects is partial because of the changes o f expression and endocytosis of Kir6.2 and SUR1 which was mediated by dynamin

    Basic aluminum sulfate@graphene hydrogel composites: preparation and application for removal of fluoride

    Get PDF
    National Natural Science Foundation of China [21104041]Porous composites based on basic aluminum sulfate and graphene hydrogel (BAS@GHG) were prepared via homogeneous precipitation of BAS in GHG, and used as adsorbents for fluoride removal from water. The BAS@GHG composites have a porous structure with a chemically converted graphene three dimensional network coated by a thin layer of amorphous BAS. These composites showed high adsorption capacities of up to 33.4 mg g(-1) at equilibrium fluoride concentrations of 10.7 mg L-1 and temperatures of 298 K, higher than those of previously reported graphene and aluminum-based adsorbents. The adsorption kinetics and isotherm were analyzed by fitting experimental data with pseudo-first-order kinetics, the Weber-Morris model and Langmuir equations. The effects of temperature, pH value, and co-existing anions on the adsorption of fluoride were also investigated

    RPS23RG1 modulates tau phosphorylation and axon outgrowth through regulating p35 proteasomal degradation

    Get PDF
    Tau蛋白病(Tauopathies)是由过度磷酸化的tau蛋白聚集形成神经纤维缠结为特征的一类神经退行性疾病,包括阿尔茨海默病(Alzheimer’s disease, AD)、进行性核上性麻痹(Progressive superanuclear palsy, PSP)、额颞叶痴呆(Frontotemporal dementia, FTD)等。随着全球社会结构的老龄化,tau蛋白病患者比率迅速增加,给个人和社会带来巨大的经济及精神负担。厦门大学神经科学研究所张云武教授团队最新发现RPS23RG1(RR1)的胞内羧基端区域能够与Cdk5激酶的激活蛋白p35的氨基端相互作用,介导p35的膜定位并影响其泛素化降解,从而调控在tau蛋白异常磷酸化过程中发挥重要作用的Cdk5激酶的活性。团队研究表明RPS23RG1通过其胞内羧基端与p35相互作用,介导p35膜结合和降解,从而抑制Cdk5活性,平衡tau磷酸化水平,促进轴突生长。此外,RPS23RG1的跨膜区与腺苷酸环化酶AC相互作用,抑制GSK3-β活性,同样控制tau过度磷酸化。提示RPS23RG1是改善tau过度磷酸化水平及治疗tau蛋白病的潜在靶点。 厦门大学医学院神经科学研究所博士后赵东栋为该研究第一作者,张云武教授为通讯作者。【Abstract】Tauopathies are a group of neurodegenerative diseases characterized by hyperphosphorylation of the microtubule-binding protein, tau, and typically feature axon impairment and synaptic dysfunction. Cyclin-dependent kinase5 (Cdk5) is a major tau kinase and its activity requires p35 or p25 regulatory subunits. P35 is subjected to rapid proteasomal degradation in its membrane-bound form and is cleaved by calpain under stress to a stable p25 form, leading to aberrant Cdk5 activation and tau hyperphosphorylation. The type Ib transmembrane protein RPS23RG1 has been implicated in Alzheimer’s disease (AD). However, physiological and pathological roles for RPS23RG1 in AD and other tauopathies are largely unclear. Herein, we observed retarded axon outgrowth, elevated p35 and p25 protein levels, and increased tau phosphorylation at major Cdk5 phosphorylation sites in Rps23rg1 knockout (KO) mice. Both downregulation of p35 and the Cdk5 inhibitor roscovitine attenuated tau hyperphosphorylation and axon outgrowth impairment in Rps23rg1 KO neurons. Interestingly, interactions between the RPS23RG1 carboxyl-terminus and p35 amino-terminus promoted p35 membrane distribution and proteasomal degradation. Moreover, P301L tau transgenic (Tg) mice showed increased tau hyperphosphorylation with reduced RPS23RG1 levels and impaired axon outgrowth. Overexpression of RPS23RG1 markedly attenuated tau hyperphosphorylation and axon outgrowth defects in P301L tau Tg neurons. Our results demonstrate the involvement of RPS23RG1 in tauopathy disorders, and implicate a role for RPS23RG1 in inhibiting tau hyperphosphorylation through homeostatic p35 degradation and suppression of Cdk5 activation. Reduced RPS23RG1 levels in tauopathy trigger aberrant Cdk5-p35 activation, consequent tau hyperphosphorylation, and axon outgrowth impairment, suggesting that RPS23RG1 may be a potential therapeutic target in tauopathy disorders.This work was supported by grants from National Key Research and Development Program of China (2016YFC1305903 and 2018YFC2000400 to Y-wZ), National Natural Science Foundation of China (81771377, U1705285, 91332112, and 81225008 to Y-wZ), Fundamental Research Funds for the Central Universities (20720180049 to Y-wZ), the Fujian Provincial Health Commission-Education Department Joint Tackling Plan (WKJ2016-2-18 to F-rL), and Postdoctoral Science Foundation of China (2020M671948 to DZ)

    Evidence based on Mendelian randomization and colocalization analysis strengthens causal relationships between structural changes in specific brain regions and risk of amyotrophic lateral sclerosis

    Get PDF
    BackgroundAmyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the degeneration of motor neurons in the brain and spinal cord with a poor prognosis. Previous studies have observed cognitive decline and changes in brain morphometry in ALS patients. However, it remains unclear whether the brain structural alterations contribute to the risk of ALS. In this study, we conducted a bidirectional two-sample Mendelian randomization (MR) and colocalization analysis to investigate this causal relationship.MethodsSummary data of genome-wide association study were obtained for ALS and the brain structures, including surface area (SA), thickness and volume of subcortical structures. Inverse-variance weighted (IVW) method was used as the main estimate approach. Sensitivity analysis was conducted detect heterogeneity and pleiotropy. Colocalization analysis was performed to calculate the posterior probability of causal variation and identify the common genes.ResultsIn the forward MR analysis, we found positive associations between the SA in four cortical regions (lingual, parahippocampal, pericalcarine, and middle temporal) and the risk of ALS. Additionally, decreased thickness in nine cortical regions (caudal anterior cingulate, frontal pole, fusiform, inferior temporal, lateral occipital, lateral orbitofrontal, pars orbitalis, pars triangularis, and pericalcarine) was significantly associated with a higher risk of ALS. In the reverse MR analysis, genetically predicted ALS was associated with reduced thickness in the bankssts and increased thickness in the caudal middle frontal, inferior parietal, medial orbitofrontal, and superior temporal regions. Colocalization analysis revealed the presence of shared causal variants between the two traits.ConclusionOur results suggest that altered brain morphometry in individuals with high ALS risk may be genetically mediated. The causal associations of widespread multifocal extra-motor atrophy in frontal and temporal lobes with ALS risk support the notion of a continuum between ALS and frontotemporal dementia. These findings enhance our understanding of the cortical structural patterns in ALS and shed light on potentially viable therapeutic targets

    BMI1 fine-tunes gene repression and activation to safeguard undifferentiated spermatogonia fate

    Get PDF
    Introduction: Spermatogenesis is sustained by the homeostasis of self-renewal and differentiation of undifferentiated spermatogonia throughout life, which is regulated by transcriptional and posttranscriptional mechanisms. B cell-specific Moloney murine leukemia virus integration site 1 (BMI1), one of spermatogonial stem cell markers, is a member of Polycomb repressive complex 1 (PRC1) and important to spermatogenesis. However, the mechanistic underpinnings of how BMI1 regulates spermatogonia fate remain elusive.Methods: We knocked down BMI1 by siRNA to investigate the role of BMI1 in undifferentiated spermatogonia. Differentially expressed genes were identified by RNA-seq and used for KEGG pathway analysis. We performed ChIP-seq analysis in wild type and BMI1 knockdown cells to explore the underlying molecular mechanisms exerted by BMI1. BMI1-associated alterations in repressive histone modifications were detected via Western blotting and ChIP-seq. Furthermore, we performed mass spectrometry and Co-immunoprecipitation assays to investigate BMI1 co-factors. Finally, we demonstrated the genomic regions occupied by both BMI1 and its co-factor.Results: BMI1 is required for undifferentiated spermatogonia maintenance by both repressing and activating target genes. BMI1 preserves PI3K-Akt signaling pathway for spermatogonia proliferation. Decrease of BMI1 affects the deposition of repressive histone modifications H2AK119ub1 and H3K27me3. BMI also positively regulates H3K27ac deposited genes which are associated with proliferation. Moreover, we demonstrate that BMI1 interacts with Sal-like 4 (SALL4), the transcription factor critical for spermatogonia function, to co-regulate gene expression.Discussion: Overall, our study reveals that BMI1 safeguards undifferentiated spermatogonia fate through multi-functional roles in regulating gene expression programs of undifferentiated spermatogonia

    Construction of an immunogenic cell death-based risk score prognosis model in breast cancer

    Get PDF
    Immunogenic cell death (ICD) is a form of regulated cell death that elicits immune response. Common inducers of ICD include cancer chemotherapy and radiation therapy. A better understanding of ICD might contribute to modify the current regimens of anti-cancer therapy, especially immunotherapy. This study aimed to identify ICD-related prognostic gene signatures in breast cancer (BC). An ICD-based gene prognostic signature was developed using Lasso-cox regression and Kaplan-Meier survival analysis based on datasets acquired from the Cancer Genome Atlas and Gene Expression Omnibus. A nomogram model was developed to predict the prognosis of BC patients. Gene Set Enrichment Analysis (GESA) and Gene Set Variation Analysis (GSVA) were used to explore the differentially expressed signaling pathways in high and low-risk groups. CIBERSORT and ESTIMATE algorithms were performed to investigate the difference of immune status in tumor microenvironment of different risk groups. Six genes (CALR, CLEC9A, BAX, TLR4, CXCR3, and PIK3CA) were selected for construction and validation of the prognosis model of BC based on public data. GSEA and GSVA analysis found that immune-related gene sets were enriched in low-risk group. Moreover, immune cell infiltration analysis showed that the immune features of the high-risk group were characterized by higher infiltration of tumor-associated macrophages and a lower proportion of CD8+ T cells, suggesting an immune evasive tumor microenvironment. We constructed and validated an ICD-based gene signature for predicting prognosis of breast cancer patients. Our model provides a tool with good discrimination and calibration abilities to predict the prognosis of BC, especially triple-negative breast cancer (TNBC)
    corecore