61 research outputs found

    Bagging by Learning to Singulate Layers Using Interactive Perception

    Full text link
    Many fabric handling and 2D deformable material tasks in homes and industry require singulating layers of material such as opening a bag or arranging garments for sewing. In contrast to methods requiring specialized sensing or end effectors, we use only visual observations with ordinary parallel jaw grippers. We propose SLIP: Singulating Layers using Interactive Perception, and apply SLIP to the task of autonomous bagging. We develop SLIP-Bagging, a bagging algorithm that manipulates a plastic or fabric bag from an unstructured state, and uses SLIP to grasp the top layer of the bag to open it for object insertion. In physical experiments, a YuMi robot achieves a success rate of 67% to 81% across bags of a variety of materials, shapes, and sizes, significantly improving in success rate and generality over prior work. Experiments also suggest that SLIP can be applied to tasks such as singulating layers of folded cloth and garments. Supplementary material is available at https://sites.google.com/view/slip-bagging/

    Optical Fiber LSPR Biosensor Prepared by Gold Nanoparticle Assembly on Polyelectrolyte Multilayer

    Get PDF
    This article provides a novel method of constructing an optical fiber localized surface plasmon resonance (LSPR) biosensor. A gold nanoparticle (NP) assembled film as the sensing layer was built on the polyelectrolyte (PE) multilayer modified sidewall of an unclad optical fiber. By using a trilayer PE structure, we obtained a monodisperse gold NP assembled film. The preparation procedure for this LSPR sensor is simple and time saving. The optical fiber LSPR sensor has higher sensitivity and outstanding reproducibility. The higher anti-interference ability for response to an antibody makes it a promising method in application as a portable immuno-sensor

    Switchable multi-wavelength mode-locked Yb-doped fiber laser using a polarization maintaining 45°-tilted fiber gratings based Lyot filter

    Get PDF
    We demonstrate a multi-wavelength mode-locked Yb-doped fiber laser by incorporating a pair of polarization maintaining 45° tilted fiber gratings (PM-45°TFG) based Lyot filter. Thanks to the functions of the polarizer and the comb filtering introduced by the Lyot filter, dissipative soliton (DS) pulses centered at 1035.26 nm, 1044.93 nm, 1055.62 nm, 1066.11 nm and 1076.63 nm can be generated respectively by finely tuning the intracavity polarization controllers (PCs). Moreover, the laser also can operate in a multi-wavelength regime via appropriately adjusting the pump power and polarization orientation. The high nonlinearity induced by the long cavity length leads to the generation of h-shaped mode-locked pulse with a repetition rate of 566.27 kHz. In the absence of any disturbance, the laser can operate steadily, that can potentially be used in various fields including wavelength division multiplexing systems etc

    26th Annual Computational Neuroscience Meeting (CNS*2017): Part 3 - Meeting Abstracts - Antwerp, Belgium. 15–20 July 2017

    Get PDF
    This work was produced as part of the activities of FAPESP Research,\ud Disseminations and Innovation Center for Neuromathematics (grant\ud 2013/07699-0, S. Paulo Research Foundation). NLK is supported by a\ud FAPESP postdoctoral fellowship (grant 2016/03855-5). ACR is partially\ud supported by a CNPq fellowship (grant 306251/2014-0)

    Radiolysis of aqueous solution containing copper ions

    No full text
    Copper and copper alloys are widely used in the field of nuclear materials. The effects of aqueous solutions that have undergone copper ion radiolysis on the generation of H2O2, O2, and H2 must be considered for material corrosion control and hydrogen explosion risk assessment. In this study, a γ-radiolysis experiment of an aqueous solution containing copper ions was conducted to explore the effects of different absorbed doses, absorption dose rates, and Cu2+ concentrations on the generation of H2O2, O2, and H2. The results showed that with an increase in the absorbed dose (0-1.80 kGy), the concentrations of H2O2 and H2(g) firstly increased and then tended to stabilize under steady-state concentrations of 5.41×10-6 and 7.91×10-5 mol/L, respectively, whereas the concentration of O2(g) remained at 9.04×10-4 mol/L. The presence of Cu2+ enhanced the equilibrium concentrations of H2 and H2O2 by one and two orders of magnitude, respectively, which in turn promoted the generation of H2O2 and H2; however, it had a negligible effect on O2 generation. The equilibrium concentrations of H2O2 and H2 increased with an increase in the absorption dose rate. Specifically, when the absorption dose rate was increased from 1.40 to 46.93 Gy/min, the equilibrium concentrations of H2O2 and H2 increased from 4.56×10-6 and 1.78×10-5 mol/L to 2.46×10-5 and 3.81×10-4 mol/L, respectively, whereas O2 remained essentially unaffected within this absorption dose rate range. In addition, based on the kinetics of water radiolysis and two-film theory of gas-liquid mass transfer, we constructed a calculation model for the radiolysis of aqueous solutions containing copper ions. Compared with the experimental data, the absolute values of the normalized mean bias in the simulation results were mostly between 1% and 7%, with a maximum of approximately 24%, thereby demonstrating the effectiveness and correctness of the calculation model. Accordingly, the model was used to calculate the radiolytic behavior of an aqueous solution containing copper ions under C6+ ion irradiation, and the simulation results matched well with the experimental data reported in the literature, indicating that the model can be expanded to other applications

    Arabidopsis VQ MOTIF-CONTAINING PROTEIN29 Represses Seedling Deetiolation by Interacting with PHYTOCHROME-INTERACTING FACTOR11[C][W][OPEN]

    No full text
    Seedling deetiolation, a critical process in early plant development, is regulated by an intricate transcriptional network. Here, we identified VQ MOTIF-CONTAINING PROTEIN29 (VQ29) as a novel regulator of the photomorphogenic response in Arabidopsis (Arabidopsis thaliana). We showed that 29 of the 34 VQ proteins present in Arabidopsis exhibit transcriptional activity in plant cells and that mutations in the VQ motif affect the transcriptional activity of VQ29. We then functionally characterized VQ29 and showed that the hypocotyl growth of plants overexpressing VQ29 is hyposensitive to far-red and low-intensity white light, whereas a vq29 loss-of-function mutant exhibits decreased hypocotyl elongation under a low intensity of far-red or white light. Consistent with this, VQ29 expression is repressed by light in a phytochrome-dependent manner. Intriguingly, our yeast (Saccharomyces cerevisiae) twohybrid, bimolecular fluorescence complementation, and coimmunoprecipitation assays showed that VQ29 physically interacts with PHYTOCHROME-INTERACTING FACTOR1 (PIF1). We then showed that VQ29 and PIF1 directly bind to the promoter of a cell elongation-related gene, XYLOGLUCAN ENDOTRANSGLYCOSYLASE7, and coactivate its expression. Furthermore, the vq29 pif1 double mutant has shorter hypocotyls than either of the corresponding single mutants. Therefore, our study reveals that VQ29 is a negative transcriptional regulator of light-mediated inhibition of hypocotyl elongation that likely promotes the transcriptional activity of PIF1 during early seedling development

    Arabidopsis VQ MOTIF-CONTAINING PROTEIN29 Represses Seedling Deetiolation by Interacting with PHYTOCHROME-INTERACTING FACTOR1

    No full text
    Seedling deetiolation, a critical process in early plant development, is regulated by an intricate transcriptional network. Here, we identified VQ MOTIF-CONTAINING PROTEIN29 (VQ29) as a novel regulator of the photomorphogenic response in Arabidopsis (Arabidopsis thaliana). We showed that 29 of the 34 VQ proteins present in Arabidopsis exhibit transcriptional activity in plant cells and that mutations in the VQ motif affect the transcriptional activity of VQ29. We then functionally characterized VQ29 and showed that the hypocotyl growth of plants overexpressing VQ29 is hyposensitive to far-red and low-intensity white light, whereas a vq29 loss-of-function mutant exhibits decreased hypocotyl elongation under a low intensity of far-red or white light. Consistent with this, VQ29 expression is repressed by light in a phytochrome-dependent manner. Intriguingly, our yeast (Saccharomyces cerevisiae) two-hybrid, bimolecular fluorescence complementation, and coimmunoprecipitation assays showed that VQ29 physically interacts with PHYTOCHROME-INTERACTING FACTOR1 (PIF1). We then showed that VQ29 and PIF1 directly bind to the promoter of a cell elongation-related gene, XYLOGLUCAN ENDOTRANSGLYCOSYLASE7, and coactivate its expression. Furthermore, the vq29 pif1 double mutant has shorter hypocotyls than either of the corresponding single mutants. Therefore, our study reveals that VQ29 is a negative transcriptional regulator of light-mediated inhibition of hypocotyl elongation that likely promotes the transcriptional activity of PIF1 during early seedling development

    Extraction and isolation of dictamnine, obacunone and fraxinellone from Dictamnus dasycarpus Turcz. by supercritical fluid extraction and high-speed counter-current chromatography

    No full text
    Supercritical fluid extraction was used to extract active compounds from the Chinese traditional medicinal D. dasycarpus under the pressure of 30 MPa and temperature of 45 ºC. Further separation and purification was established by high-speed counter-current chromatography (HSCCC) with a two-phase solvent system composed of n-hexane-ethyl acetate-methanol-water (1:0.8:1.3:0.9, volume ratio). The separation yielded a total of 47 mg of dictamnine, 24 mg of obacunone and 83 mg of fraxinellone from 1.0 g of the crude extract in one step separation with the purity of 99.2, 98.4 and 99.0%, respectively, as determined by HPLC. The chemical structures of these compounds were identified by ESI-MS, IR, ¹H-NMR and 13C-NMR
    corecore