4,332 research outputs found

    Exact solution and interfacial tension of the six-vertex model with anti-periodic boundary conditions

    Get PDF
    We consider the six-vertex model with anti-periodic boundary conditions across a finite strip. The row-to-row transfer matrix is diagonalised by the `commuting transfer matrices' method. {}From the exact solution we obtain an independent derivation of the interfacial tension of the six-vertex model in the anti-ferroelectric phase. The nature of the corresponding integrable boundary condition on the XXZXXZ spin chain is also discussed.Comment: 18 pages, LaTeX with 1 PostScript figur

    Collapse of Vacuum Bubbles in a Vacuum

    Get PDF
    Motivated by the discovery of a plenitude of metastable vacua in a string landscape and the possibility of rapid tunneling between these vacua, we revisit the dynamics of a false vacuum bubble in a background de Sitter spacetime. We find that there exists a large parameter space that allows the bubble to collapse into a black hole or to form a wormhole. This may have interesting implications to inflationary physics.Comment: 8 pages including 6 figures, LaTex; references adde

    The Submillimeter Array

    Full text link
    The Submillimeter Array (SMA), a collaborative project of the Smithsonian Astrophysical Observatory (SAO) and the Academia Sinica Institute of Astronomy and Astrophysics (ASIAA), has begun operation on Mauna Kea in Hawaii. A total of eight 6-m telescopes comprise the array, which will cover the frequency range of 180-900 GHz. All eight telescopes have been deployed and are operational. First scientific results utilizing the three receiver bands at 230, 345, and 690 GHz have been obtained and are presented in the accompanying papers.Comment: 10 pages, 4 figure

    Multi-Qubit Gates in Arrays Coupled by 'Always On' Interactions

    Full text link
    Recently there has been interest in the idea of quantum computing without control of the physical interactions between component qubits. This is highly appealing since the 'switching' of such interactions is a principal difficulty in creating real devices. It has been established that one can employ 'always on' interactions in a one-dimensional Heisenberg chain, provided that one can tune the Zeeman energies of the individual (pseudo-)spins. It is important to generalize this scheme to higher dimensional networks, since a real device would probably be of that kind. Such generalisations have been proposed, but only at the severe cost that the efficiency of qubit storage must *fall*. Here we propose the use of multi-qubit gates within such higher-dimensional arrays, finding a novel three-qubit gate that can in fact increase the efficiency beyond the linear model. Thus we are able to propose higher dimensional networks that can constitute a better embodiment of the 'always on' concept - a substantial step toward bringing this novel concept to full fruition.Comment: 20 pages in preprint format, inc. 3 figures. This version has fixed typos and printer-friendly figures, and is to appear in NJ

    Position-dependent mass models and their nonlinear characterization

    Full text link
    We consider the specific models of Zhu-Kroemer and BenDaniel-Duke in a sech2^{2}-mass background and point out interesting correspondences with the stationary 1-soliton and 2-soliton solutions of the KdV equation in a supersymmetric framework.Comment: 8 Pages, Latex version, Two new references are added, To appear in J.Phys.A (Fast Track Communication

    High Temperature Photochemistry in the Atmosphere of HD189733b

    Get PDF
    Recent infrared spectroscopy of hot exoplanets is beginning to reveal their atmospheric composition. Deep with in the planetary atmosphere, the composition is controlled by thermochemical equilibrium. Photochemistry becomes important higher in the atmosphere, at levels above ~1 bar. These two chemistries compete between ~1-10 bars in hot Jupiter-like atmospheres, depending on the strength of the eddy mixing and temperature. HD189733b provides an excellent laboratory in which to study the consequences of chemistry of hot atmospheres. The recent spectra of HD189733b and HD209458b contain signatures of CH4, CO2, CO and H2O. Here we identify the primary chemical pathways that govern the abundances of CH4, CO2, CO and H2O in the cases of thermochemical equilibrium chemistry, photochemistry, and their combination. Our results suggest that the abundance of these species can be photochemically enhanced above or below the thermochemical equilibrium value, so some caution must be taken when assuming that an atmosphere is in strict thermochemical equilibrium
    corecore