Recent infrared spectroscopy of hot exoplanets is beginning to reveal their
atmospheric composition. Deep with in the planetary atmosphere, the composition
is controlled by thermochemical equilibrium. Photochemistry becomes important
higher in the atmosphere, at levels above ~1 bar. These two chemistries compete
between ~1-10 bars in hot Jupiter-like atmospheres, depending on the strength
of the eddy mixing and temperature. HD189733b provides an excellent laboratory
in which to study the consequences of chemistry of hot atmospheres. The recent
spectra of HD189733b and HD209458b contain signatures of CH4, CO2, CO and H2O.
Here we identify the primary chemical pathways that govern the abundances of
CH4, CO2, CO and H2O in the cases of thermochemical equilibrium chemistry,
photochemistry, and their combination. Our results suggest that the abundance
of these species can be photochemically enhanced above or below the
thermochemical equilibrium value, so some caution must be taken when assuming
that an atmosphere is in strict thermochemical equilibrium