72 research outputs found

    The Effect of Total Thyroidectomy on the Speech Production

    Get PDF
    ObjectivesVoice and speech alternations that can occur after total thyroidectomy are usually due to recurrent or superior laryngeal nerve injury. These alterations may also be associated with other extralaryngeal factors, such as neck muscle dysfunction and scar contracture of the neck. We performed a prospective acoustic analysis on speech changes after surgery, in the absence of laryngeal nerve injury.MethodsPatients aged 19 to 58 years undergoing total thyroidectomy, in the absence of laryngeal/pulmonary disease, previous neck surgery, or other malignant diseases, were recruited prospectively. For the running speech analysis, the speaking fundamental frequencies (SFo), range of SFo and speaking intensity were evaluated before surgery, 7 days, and 1 and 3 months after surgery. For consonant analysis, the acoustic distinctions of stop consonant, the voice onset time (VOT), vowel duration and closure duration were evaluated at the same periods.ResultsSFo and range of SFo were specifically diminished after surgery, while speaking intensities were not changed significantly after surgery. The thyroidectomized speakers displayed systematically varied VOT for the consonant production, which was phonetically representative. However, VOT after surgery could be longer in the strong aspirated and glottalized stops, but not in the lax stop than before surgery. The vowel and closure durations were not affected before and after surgery.ConclusionPatients with thyroidectomy have some difficulty of pitch control and consonant articulation during speaking. VOT is also one of the meaningful acoustic parameters and provide a reference for comparing acoustic measures before and after thyroidectomy

    Portulaca oleracea Ameliorates Diabetic Vascular Inflammation and Endothelial Dysfunction in db/db Mice

    Get PDF
    Type 2 diabetes is associated with significantly accelerated rates of micro- and macrovascular complications such as diabetic vascular inflammation and endothelial dysfunction. In the present study, we investigated the protective effect of the aqueous extract of Portulaca oleracea L. (AP), an edible plant used as a folk medicine, on diabetic vascular complications. The db/db mice were treated with AP (300 mg/kg/day, p.o.) for 10 weeks, and AP treatment markedly lowered blood glucose, plasma triglyceride, plasma level of LDL-cholesterol, and systolic blood pressure in diabetic db/db mice. Furthermore, AP significantly increased plasma level of HDL-cholesterol and insulin level. The impairment of ACh- and SNP-induced vascular relaxation of aortic rings were ameliorated by AP treatment in diabetic db/db mice. This study also showed that overexpression of VCAM-1, ICAM-1, E-selectin, MMP-2, and ET-1 were observed in aortic tissues of untreated db/db mice, which were significantly suppressed by treatment with AP. We also found that the insulin immunoreactivity of the pancreatic islets remarkably increased in AP treated db/db mice compared with untreated db/db mice. Taken together, AP suppresses hyperglycemia and diabetic vascular inflammation, and prevents the development of diabetic endothelial dysfunction for the development of diabetes and its vascular complications

    The Reaction Mechanism and Capacity Degradation Model in Lithium Insertion Organic Cathodes, Li_2C_6O_6, Using Combined Experimental and First Principle Studies

    Get PDF
    Herein, we explore the capacity degradation of dilithium rhodizonate salt (Li_2C_6O_6) in lithium rechargeable batteries based on detailed investigations of the lithium de/insertion mechanism in Li_2C_6O_6 using both electrochemical and structural ex situ analyses combined with first-principles calculations. The experimental observations indicate that the Li_xC_6O_6 electrode undergoes multiple two-phase reactions in the composition range of 2 ≤ x ≤ 6; however, the transformations in the range 2 ≤ x ≤ 4 involve a major morphological change that eventually leads to particle exfoliation and the isolation of active material. Through first-principles analysis of Li_xC_6O_6 during de/lithiation, it was revealed that particle exfoliation is closely related to the crystal structural changes with lithium deinsertion from C_6O_6 interlayers of the Li_xC_6O_6. Among the lithium ions found at various sites, the extraction of lithium from C_6O_6 interlayers at 2 ≤ x ≤ 4 decreases the binding force between the C_6O_6 layers, promoting the exfoliation of C_6O_6 layers and pulverization at the electrode, which degrades capacity retention

    Effect of Poria cocos

    Get PDF
    Nephrotic syndrome is associated with altered renal handling of water and sodium and changes in the levels of aquaporins (AQPs) and epithelial Na channels (ENaCs). The dried sclerotia of Poria cocos Wolf (WPC) have been used for treating chronic edema and nephrosis. We evaluated the effects of WPC on puromycin aminonucleoside- (PAN-) induced renal functional derangement and altered renal AQP2 and ENaC expression. In the nephrotic syndrome rat model, animals were injected with 75 mg/kg PAN and then treated with Losartan (30 mg·kg−1·day−1) or WPC (200 mg·kg−1·day−1) for 7 days. In the WPC group, proteinuria and ascites improved significantly. Plasma levels of triglyceride, total cholesterol, and low-density lipoprotein- (LDL-) cholesterol reduced significantly in the WPC group. In addition, the WPC group exhibited attenuation of the PAN-induced increase in AQP2 and ENaC α/β subunit protein and mRNA levels. WPC suppressed significantly PAN-induced organic osmolyte regulators, reducing serum- and glucocorticoid-inducible protein kinase (Sgk1) and sodium-myo-inositol cotransporter (SMIT) mRNA expression. Our results show that WPC improves nephrotic syndrome, including proteinuria and ascites, through inhibition of AQP2 and ENaC expression. Therefore, WPC influences body-fluid regulation via inhibition of water and sodium channels, thereby, improving renal disorders such as edema or nephrosis

    Vascular Protective Role of Samul-Tang in HUVECs: Involvement of Nrf2/HO-1 and NO

    Get PDF
    Samul-Tang (Si-Wu-Tang, SMT), composed of four medicinal herbs, is a well-known herbal formula treating hematological disorder or gynecologic disease. However, vascular protective effects of SMT and its molecular mechanisms on the vascular endothelium, known as the central spot of vascular inflammatory process, are not reported. The aim of this study was to investigate vascular protective effects of SMT water extract in human umbilical vein endothelial cells (HUVECs). Water extract of SMT was prepared and identified by HPLC-PDA analysis. Expression of cell adhesion molecules (CAMs) and heme oxygenase-1 (HO-1) and translocation of nuclear factor-kappa B (NF-κB) and nuclear factor-erythroid 2-related factor 2 (Nrf2) were determined by western blot. Nuclear localization of NF-κB and Nrf2 was visualized by immunofluorescence and DNA binding activity of NF-κB was measured. ROS production, HL-60 monocyte adhesion, and intracellular nitric oxide (NO) were also measured using a fluorescent indicator. SMT suppressed NF-κB translocation and activation as well as expression of CAMs, monocyte adhesion, and ROS production induced by TNF-α in HUVECs. SMT treated HUVECs showed upregulation of HO-1 and NO which are responsible for vascular protective action. Our study suggests that SMT, a traditionally used herbal formula, protects the vascular endothelium from inflammation and might be used as a promising vascular protective drug

    Effect of Atractylodes macrocephala

    Get PDF
    Edema is a symptom that results from the abnormal accumulation of fluid in the body. The cause of edema is related to the level of aquaporin (AQP)2 protein expression, which regulates the reabsorption of water in the kidney. Edema is caused by overexpression of the AQP2 protein when the concentration of Na+ in the blood increases. The rhizome of Atractylodes macrocephala has been used in traditional oriental medicine as a diuretic drug; however, the mechanism responsible for the diuretic effect of the aqueous extract from A. macrocephala rhizomes (AAMs) has not yet been identified. We examined the effect of the AAM on the regulation of water channels in the mouse inner medullary collecting duct (mIMCD)-3 cells under hypertonic stress. Pretreatment of AAM attenuates a hypertonicity-induced increase in AQP2 expression as well as the trafficking of AQP2 to the apical plasma membrane. Tonicity-responsive enhancer binding protein (TonEBP) is a transcription factor known to play a central role in cellular homeostasis by regulating the expression of some proteins, including AQP2. Western immunoblot analysis demonstrated that the protein and mRNA expression levels of TonEBP also decrease after AAM treatment. These results suggest that the AAM has a diuretic effect by suppressing water reabsorption via the downregulation of the TonEBP-AQP2 signaling pathway

    Doinseunggitang Ameliorates Endothelial Dysfunction in Diabetic Atherosclerosis

    Get PDF
    Atherosclerosis, a chronic and progressive disease characterized by vascular inflammation, is a leading cause of death in diabetes patients. Doinseunggitang (DYSGT), traditional prescription, has been used for promoting blood circulation to remove blood stasis. The aim of this study was to investigate the beneficial effects of DYSGT on endothelial dysfunction in diabetic atherosclerosis animal model. Apolipoprotein E knockout (ApoE KO) mice fed on a Western diet were treated with DYSGT (200 mg/kg/day). DYSGT significantly lowered blood glucose level and glucose tolerance as well as systolic blood pressure. Metabolic parameter showed that DYSGT markedly decreased triglyceride and LDL-cholesterol levels. In the thoracic aorta, the impairment of vasorelaxation response to acetylcholine and atherosclerotic lesion was attenuated by DYSGT. Furthermore, DYSGT restored the reduction of endothelial nitric oxide synthase (eNOS) expression, leading to the inhibition of intracellular adhesion molecule-1 (ICAM-1) and endothelin-1 (ET-1) expression. In conclusion, DYSGT improved the development of diabetic atherosclerosis via attenuation of the endothelial dysfunction, possibly by inhibiting ET-1, cell adhesion molecules, and lesion formation. Therefore, these results suggest that Korean traditional prescription Doinseunggitang may be useful in the treatment and prevention of diabetic vascular complications

    Prunella vulgaris Suppresses HG-Induced Vascular Inflammation via Nrf2/HO-1/eNOS Activation

    Get PDF
    Vascular inflammation is an important factor which can promote diabetic complications. In this study, the inhibitory effects of aqueous extract from Prunella vulgaris (APV) on high glucose (HG)-induced expression of cell adhesion molecules in human umbilical vein endothelial cells (HUVEC) are reported. APV decreased HG-induced expression of intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and E-selectin. APV also dose-dependently inhibited HG-induced adhesion of HL-60 monocytic cells. APV suppressed p65 NF-κB activation in HG-treated cells. APV significantly inhibited the formation of intracellular reactive oxygen species (ROS). HG-stimulated HUVEC secreted gelatinases, however, APV inhibited it. APV induced Akt phosphorylation as well as activation of heme oxygenase-1 (HO-1), eNOS, and nuclear factor E2-related factor 2 (Nrf2), which may protect vascular inflammation caused by HG. In conclusion, APV exerts anti-inflammatory effect via inhibition of ROS/NF-κB pathway by inducing HO-1 and eNOS expression mediated by Nrf2, thereby suggesting that Prunella vulgaris may be a possible therapeutic approach to the inhibition of diabetic vascular diseases

    Bacillus subtilis spores as adjuvants against avian influenza H9N2 induce antigen-specific antibody and T cell responses in White Leghorn chickens

    Get PDF
    Low-pathogenicity avian influenza H9N2 remains an endemic disease worldwide despite continuous vaccination, indicating the need for an improved vaccine strategy. Bacillus subtilis (B. subtilis), a gram-positive and endospore-forming bacterium, is a non-pathogenic species that has been used in probiotic formulations for both animals and humans. The objective of the present study was to elucidate the effect of B. subtilis spores as adjuvants in chickens administered inactivated avian influenza virus H9N2. Herein, the adjuvanticity of B. subtilis spores in chickens was demonstrated by enhancement of H9N2 virus-specific IgG responses. B. subtilis spores enhanced the proportion of B cells and the innate cell population in splenocytes from chickens administered both inactivated H9N2 and B. subtilis spores (Spore + H9N2). Furthermore, the H9N2 and spore administration induced significantly increased expression of the pro-inflammatory cytokines IL-1β and IL-6 compared to that in the H9N2 only group. Additionally, total splenocytes from chickens immunized with inactivated H9N2 in the presence or absence of B. subtilis spores were re-stimulated with inactivated H9N2. The subsequent results showed that the extent of antigen-specific CD4+ and CD8+ T cell proliferation was higher in the Spore + H9N2 group than in the group administered only H9N2. Taken together, these data demonstrate that B. subtilis spores, as adjuvants, enhance not only H9N2 virus-specific IgG but also CD4+ and CD8+ T cell responses, with an increase in pro-inflammatory cytokine production. This approach to vaccination with inactivated H9N2 together with a B. subtilis spore adjuvant in chickens produces a significant effect on antigen-specific antibody and T cell responses against avian influenza virus.This study and medical writing support were funded by Sanofi Genzyme and Regeneron Pharmaceuticals, Inc

    25th annual computational neuroscience meeting: CNS-2016

    Get PDF
    The same neuron may play different functional roles in the neural circuits to which it belongs. For example, neurons in the Tritonia pedal ganglia may participate in variable phases of the swim motor rhythms [1]. While such neuronal functional variability is likely to play a major role the delivery of the functionality of neural systems, it is difficult to study it in most nervous systems. We work on the pyloric rhythm network of the crustacean stomatogastric ganglion (STG) [2]. Typically network models of the STG treat neurons of the same functional type as a single model neuron (e.g. PD neurons), assuming the same conductance parameters for these neurons and implying their synchronous firing [3, 4]. However, simultaneous recording of PD neurons shows differences between the timings of spikes of these neurons. This may indicate functional variability of these neurons. Here we modelled separately the two PD neurons of the STG in a multi-neuron model of the pyloric network. Our neuron models comply with known correlations between conductance parameters of ionic currents. Our results reproduce the experimental finding of increasing spike time distance between spikes originating from the two model PD neurons during their synchronised burst phase. The PD neuron with the larger calcium conductance generates its spikes before the other PD neuron. Larger potassium conductance values in the follower neuron imply longer delays between spikes, see Fig. 17.Neuromodulators change the conductance parameters of neurons and maintain the ratios of these parameters [5]. Our results show that such changes may shift the individual contribution of two PD neurons to the PD-phase of the pyloric rhythm altering their functionality within this rhythm. Our work paves the way towards an accessible experimental and computational framework for the analysis of the mechanisms and impact of functional variability of neurons within the neural circuits to which they belong
    corecore