9 research outputs found

    Immune Mechanisms of Pulmonary Fibrosis with Bleomycin

    No full text
    Fibrosis and structural remodeling of the lung tissue can significantly impair lung function, often with fatal consequences. The etiology of pulmonary fibrosis (PF) is diverse and includes different triggers such as allergens, chemicals, radiation, and environmental particles. However, the cause of idiopathic PF (IPF), one of the most common forms of PF, remains unknown. Experimental models have been developed to study the mechanisms of PF, and the murine bleomycin (BLM) model has received the most attention. Epithelial injury, inflammation, epithelial–mesenchymal transition (EMT), myofibroblast activation, and repeated tissue injury are important initiators of fibrosis. In this review, we examined the common mechanisms of lung wound-healing responses after BLM-induced lung injury as well as the pathogenesis of the most common PF. A three-stage model of wound repair involving injury, inflammation, and repair is outlined. Dysregulation of one or more of these three phases has been reported in many cases of PF. We reviewed the literature investigating PF pathogenesis, and the role of cytokines, chemokines, growth factors, and matrix feeding in an animal model of BLM-induced PF

    Immune Mechanisms of Pulmonary Fibrosis with Bleomycin

    No full text
    Fibrosis and structural remodeling of the lung tissue can significantly impair lung function, often with fatal consequences. The etiology of pulmonary fibrosis (PF) is diverse and includes different triggers such as allergens, chemicals, radiation, and environmental particles. However, the cause of idiopathic PF (IPF), one of the most common forms of PF, remains unknown. Experimental models have been developed to study the mechanisms of PF, and the murine bleomycin (BLM) model has received the most attention. Epithelial injury, inflammation, epithelial–mesenchymal transition (EMT), myofibroblast activation, and repeated tissue injury are important initiators of fibrosis. In this review, we examined the common mechanisms of lung wound-healing responses after BLM-induced lung injury as well as the pathogenesis of the most common PF. A three-stage model of wound repair involving injury, inflammation, and repair is outlined. Dysregulation of one or more of these three phases has been reported in many cases of PF. We reviewed the literature investigating PF pathogenesis, and the role of cytokines, chemokines, growth factors, and matrix feeding in an animal model of BLM-induced PF

    Essential Involvement of Neutrophil Elastase in Acute Acetaminophen Hepatotoxicity Using BALB/c Mice

    No full text
    Intense neutrophil infiltration into the liver is a characteristic of acetaminophen-induced acute liver injury. Neutrophil elastase is released by neutrophils during inflammation. To elucidate the involvement of neutrophil elastase in acetaminophen-induced liver injury, we investigated the efficacy of a potent and specific neutrophil elastase inhibitor, sivelestat, in mice with acetaminophen-induced acute liver injury. Intraperitoneal administration of 750 mg/kg of acetaminophen caused severe liver damage, such as elevated serum transaminase levels, centrilobular hepatic necrosis, and neutrophil infiltration, with approximately 50% mortality in BALB/c mice within 48 h of administration. However, in mice treated with sivelestat 30 min after the acetaminophen challenge, all mice survived, with reduced serum transaminase elevation and diminished hepatic necrosis. In addition, mice treated with sivelestat had reduced NOS-II expression and hepatic neutrophil infiltration after the acetaminophen challenge. Furthermore, treatment with sivelestat at 3 h after the acetaminophen challenge significantly improved survival. These findings indicate a new clinical application for sivelestat in the treatment of acetaminophen-induced liver failure through mechanisms involving the regulation of neutrophil migration and NO production

    Prevention of lipopolysaccharide-induced preterm labor by the lack of CX3CL1-CX3CR1 interaction in mice.

    No full text
    Preterm labor (PTL) is the most common cause of neonatal death and long-term adverse outcome. The pharmacological agents for PTL prevention are palliative and frequently fail to prevent PTL and improve neonatal outcome. It is essential to fully understand the molecular mechanisms of PTL in order to develop novel therapeutic methods against PTL. Several lines of evidence indicate some chemokines are expressed in gestational tissues during labor or PTL. To reveal the pathophysiological roles of the CX3CL1-CX3CR1 axis in PTL, we performed present study using LPS-induced PTL mice model in CX3CR1-deficient (Cx3cr1-/-) mice. We indicated that PTL was suppressed in Cx3cr1-/- mice and immunoneutralization of CX3CL1 in WT mice. From immunohistochemical and the gene expression analyses, the CX3CL1-CX3CR1 axis has detrimental roles in PTL through intrauterine recruitment of macrophages and the enhancement of macrophage-derived inflammatory mediators. Thus, the CX3CL1-CX3CR1 axis may be a good molecular target for preventing PTL

    Pivotal role of the CCL5/CCR5 interaction for recruitment of endothelial progenitor cells in mouse wound healing

    No full text
    BM-derived endothelial progenitor cells (EPCs) are critical and essential for neovascularization in tissue repair and tumorigenesis. EPCs migrate from BM to tissues via the bloodstream, but specific chemotactic cues have not been identified. Here we show in mice that the absence of CCR5 reduced vascular EPC accumulation and neovascularization, but not macrophage recruitment, and eventually delayed healing in wounded skin. When transferred into Ccr5–/– mice, Ccr5+/+ BM cells, but not Ccr5–/– cells, accumulated in the wound site, were incorporated into the vasculature, and restored normal neovascularization. Consistent with these observations, CCL5 induced in vitro EPC migration in a CCR5-dependent manner. Moreover, expression of VEGF and TGF-β was substantially diminished at wound sites in Ccr5–/– mice, which suggests that EPCs are important not only as the progenitors of endothelial cells, but also as the source of growth factors during tissue repair. Taken together, these data identify the CCL5/CCR5 interaction as what we believe to be a novel molecular target for modulation of neovascularization and eventual tissue repair

    Forensic significance of intracardiac expressions of Nrf2 in acute myocardial ischemia

    No full text
    Abstract When exposed to oxidative and electrophilic stress, a protective antioxidant response is initiated by nuclear factor erythroid 2-related factor 2 (Nrf2). However, the extent of its importance in the forensic diagnosis of acute ischemic heart diseases (AIHD), such as myocardial infarction (MI), remains uncertain. On the other hand, immunohistochemical analyses of fibronectin (FN) and the terminal complement complex (C5b-9) prove valuable in identifying myocardial ischemia that precedes necrosis during the postmortem diagnosis of sudden cardiac death (SCD). In this study, we investigated the immunohistochemical levels of Nrf2, FN, and C5b-9 in human cardiac samples to explore their forensic relevance for the identification of acute cardiac ischemia. Heart samples were obtained from 25 AIHD cases and 39 non-AIHD cases as controls. Nrf2 was localized in the nuclei of cardiomyocytes, while FN and C5b-9 were detected in the myocardial cytoplasm. The number of intranuclear Nrf2 positive signals in cardiomyocytes increased in AIHD cases compared to control cases. Additionally, the grading of positive portions of cardiac FN and C5b-9 in the myocardium was also significantly enhanced in AIHD, compared to controls. Collectively, these results indicate that the immunohistochemical investigation of Nrf2 combined with FN, and/or C5b-9 holds the potential for identifying early-stage myocardial ischemic lesions in cases of SCD

    Absence of IFN-γ accelerates thrombus resolution through enhanced MMP-9 and VEGF expression in mice

    No full text
    Deep vein thrombosis (DVT) is a major cause of pulmonary thromboembolism, a leading cause of death in individuals with DVT. Several lines of evidence indicate proinflammatory cytokines such as TNF-α are involved in thrombus formation and resolution, but the roles of IFN-γ remain unclear. To address this issue, we performed ligation of the inferior vena cava to induce DVT in WT and IFN-γ–deficient (Ifng–/–) mice. In WT mice, intrathrombotic IFN-γ levels were elevated progressively as the postligation interval was extended. Thrombus size was substantially smaller at 10 and 14 days in Ifng–/– mice than in WT mice. Intrathrombotic collagen content was remarkably reduced at more than 10 days after the ligation in Ifng–/– mice compared with WT mice. The expression and activity of MMP-9, but not MMP-2, was higher at the late phase in Ifng–/– mice than in WT mice. Moreover, intrathrombotic recanalization was increased in Ifng–/– mice, with enhanced Vegf gene expression, compared with that in WT mice. Activation of the IFN-γ/Stat1 signal pathway suppressed PMA-induced Mmp9 and Vegf gene expression in peritoneal macrophages. Furthermore, administration of anti–IFN-γ mAbs accelerated thrombus resolution in WT mice. Collectively, these findings indicate that IFN-γ can have detrimental roles in thrombus resolution and may be a good molecular target for the acceleration of thrombus resolution in individuals with DVT
    corecore