145 research outputs found

    Preparation of a low viscosity urethane-based composite for improved dental restoratives

    Get PDF
    Several new urethane-based dimethacrylates were synthesized, characterized and used to formulate the resin composites. Compressive strength (CS) was used as a screen tool to evaluate the mechanical property of the formed composites. Flexural strength, diametral tensile strength, water sorption, degree of conversion and shrinkage of the composites were also evaluated. The results show that most of the synthesized urethane-based dimethacrylates were solid, which are not suitable to dental filling restorations. However, it was found that liquid urethane-based dimethacrylates could be derivatized using asymmetrical methacrylate synthesis. Not only the newly synthesized urethane-based dimethacrylates showed lower viscosity values but also their constructed composites exhibited higher mechanical strengths. Without triethyleneglycol dimethacrylate (TEGDMA) addition, the new urethane-constructed composites showed significantly lower water sorption and shrinkage

    Model and Frequency Control for Three-Phase Wireless Power Transfer System

    Get PDF
    In order to the eliminate the “dead spot” in the traditional three-phase wireless power transfer (WPT) system, a three-phase WPT system with an asymmetric magnetic circuit is presented in this paper. Additionally, mathematical model of the system is established and the system parameters are optimized. Based on the fact that the resonant frequency and efficiency are greatly varied with the load, a method based on impedance conversion is further proposed to improve the frequency stability and system efficiency. Finally, simulation and experimental results show that the proposed method is reliable and feasible to eliminate the “dead spot.

    An Undersea Mining Microseism Source Location Algorithm Considering Wave Velocity Probability Distribution

    Get PDF
    The traditional mine microseism locating methods are mainly based on the assumption that the wave velocity is uniform through the space, which leads to some errors for the assumption goes against the laws of nature. In this paper, the wave velocity is regarded as a random variable, and the probability distribution information of the wave velocity is fused into the traditional locating method. This paper puts forwards the microseism source location method for the undersea mining on condition of the probability distribution of the wave velocity and comes up with the solving process of Monte Carlo. In addition, based on the simulated results of the Monte Carlo method, the space is divided into three areas: the most possible area (area I), the possible area (area II), and the small probability area (area III). Attached to corresponding mathematical formulations, spherical models and cylindrical models in different areas are, respectively, built according to whether the source is in the sensor arrays. Both the examples and the actual applications show that (1) the method of microseism source location in this paper can highly improve the accuracy of the microseism monitoring, especially for the source beyond the sensor arrays, and (2) the space-dividing method based on occurrence possibilities of the source can recognize and sweep the hidden dangers for it predicts the probable location range of the source efficiently, while the traditional method cannot

    How Low Nucleation Density of Graphene on CuNi Alloy is Achieved

    Get PDF
    CuNi alloy foils are demonstrated to be one of the best substrates for synthesizing large area single-crystalline graphene because a very fast growth rate and low nucleation density can be simultaneously achieved. The fast growth rate is understood to be due the abundance of carbon precursor supply, as a result of the high catalytic activity of Ni atoms. However, a theoretical understanding of the low nucleation density remains controversial because it is known that a high carbon precursor concentration on the surface normally leads to a high nucleation density. Here, the graphene nucleation on the CuNi alloy surfaces is systematically explored and it is revealed that: i) carbon atom dissolution into the CuNi alloy passivates the alloy surface, thereby drastically increasing the graphene nucleation barrier; ii) carbon atom diffusion on the CuNi alloy surface is greatly suppressed by the inhomogeneous atomic structure of the surface; and iii) a prominent increase in the rate of carbon diffusion into the bulk occurs when the Ni composition is higher than the percolation threshold. This study reveals the key mechanism for graphene nucleation on CuNi alloy surfaces and provides a guideline for the catalyst design for the synthesis of graphene and other 2D materials

    EEG-based emotion classification using spiking neural networks

    Get PDF
    A novel method of using the spiking neural networks (SNNs) and the electroencephalograph (EEG) processing techniques to recognize emotion states is proposed in this paper. Three algorithms including discrete wavelet transform (DWT), variance and fast Fourier transform (FFT) are employed to extract the EEG signals, which are further taken by the SNN for the emotion classification. Two datasets, i.e., DEAP and SEED, are used to validate the proposed method. For the former dataset, the emotional states include arousal, valence, dominance and liking where each state is denoted as either high or low status. For the latter dataset, the emotional states are divided into three categories (negative, positive and neutral). Experimental results show that by using the variance data processing technique and SNN, the emotion states of arousal, valence, dominance and liking can be classified with accuracies of 74%, 78%, 80% and 86.27% for the DEAP dataset, and an overall accuracy is 96.67% for the SEED dataset, which outperform the FFT and DWT processing methods. In the meantime, this work achieves a better emotion classification performance than the benchmarking approaches, and also demonstrates the advantages of using SNN for the emotion state classifications

    Long-lived magmatic evolution and mineralization resulted in formation of the giant Cuonadong Sn-W-Be polymetallic deposit, southern Tibet

    Get PDF
    The Cuonadong Sn-W-Be polymetallic deposit is the first Cenozoic leucogranite-related rare-metal deposit with giant metallogenic potential in the Himalayan orogen. However, controlling factors for the supernormal enrichment of beryllium, tin and tungsten in this deposit remain vague. In this study, we carried out systematic geochronological, whole-rock geochemical, and Sr-Nd isotopic analysis for the Cuonadong leucogranites, as well as detailed ore-forming geochronological analysis. The monazite U-Th-Pb, cassiterite U-Pb and muscovite Ar-Ar dating results, together with previously reported geochronological data, indicate that the major Cuonadong leucogranites (including, from old to young, weakly-oriented two-mica, two-mica granite and muscovite) were formed during ∼21-15 Ma, whereas the Sn-W-Be mineralization mainly occurred at ∼18-14 Ma. The Cuonadong leucogranites show strong peraluminous (A/CNK=1.09-1.22) features, and have high SiO2 (71.62-75.97 wt.%) and Al2O3 (14.04-16.09 wt.%) and low MgO (0.07-0.33 wt.%), MnO (0.01-0.15 wt.%) and total Fe2O3 (0.36-1.01 wt.%) contents, and are enriched in large ion lithophile elements (e.g., Rb, U, K, and Pb). These geochemical features together with enriched Sr-Nd isotopes (εNd(t) = -15.7 to -11.7; (87Sr/86Sr)i=0.71957-0.76313) indicate that the Cuonadong leucogranites belong to S-type granite and were derived from muscovite-induced dehydration melting of metapelites of the Higher Himalayan Crystalline Sequence. Perceptible linear variations of some major elements (e.g., Na2O, K2O, MnO, Fe2O3T, TiO2 and A/CNK) with increasing Rb/Sr ratios suggest these leucogranites experienced different degrees of evolution. Quantitative simulation calculations based on the whole-rock Rb, Sr, and Ba contents imply that the Cuonadong leucogranites experienced increasingly-strong fractional crystallization of plagioclase, K-feldspar and biotite from the weakly-oriented two-mica granite to two-mica granite and muscovite granite. Importantly, intense fractional crystallization leaded to notable enrichment of Sn, W and Be, although these elements are not obviously high in the relatively primitive magma for the Cuonadong leucogranites. Significantly, evident REE tetrad effects and deviation of twin-element pair ratios (K/Rb, K/Ba, Zr/Hf, Nb/Ta, and Y/Ho) from the chondritic values demonstrate that intense interaction between melts and F-rich aqueous fluids occurred during magmatic evolution. This implies that the Cuonadong leucogranites were derived from a volatile-rich magmatic system. The abundant volatiles probably remarkably facilitated and extended the fractional crystallization though lowering the solidus and viscosity of the magma. Thus, we propose that long-lived crystal fractionation (∼21-15 Ma) and mineralization (∼18-14 Ma) collectively leaded to supernormal enrichment of Sn, W, and Be in the Cuonadong Sn-W-Be polymetallic deposit. In contrast, the enrichment of Sn, W, and Be during the partial melting was insignificant.publishedVersio

    Partial melting of amphibolitic lower crust and subsequent melt-crystal separation for generation of the Early Eocene magmatism in eastern Himalaya

    Get PDF
    The Himalayan leucogranites provide a good opportunity to investigate the crustal evolution of the southern Qinghai-Tibet Plateau. In this study, we present zircon U-Pb and monazite U-Th-Pb ages, zircon Hf isotopes and whole-rock Sr-Nd-Pb isotopes and major and trace elements for the Liemai two-mica granite, eastern Himalaya. Together with previously published data we revalued the petrogenesis of the Early Eocene magmatic rocks in this region and their geological implications. The zircon and monazite U-(Th)-Pb dating results showed that the Liemai two-mica granite was generated at ∼ 43 Ma, similar to adjacent Yardoi, Dala and Quedang adakitic two-mica granites, Ridang subvolcanic rocks and Yardoi leucogranite. The Liemai two-mica granite, similar to these coeval adakitic two-mica granites, is enriched in SiO2, Al2O3, Th, U, Pb, La, and Sr, and depleted in MgO, total iron, Yb and Y with high Sr/Y and (La/Yb)N ratios (showing adakitic affinities), and exhibits enriched Sr-Nd-Pb-Hf isotopic compositions, suggesting an origin of a thickened lower crust consisting mainly of garnet amphibolite. Although the Ridang subvolcanic rocks and Yardoi leucogranite show similar Sr-Nd-Hf isotopes to these adjacent coeval two-mica granites, perceptible differences in whole-rock major and trace elements can be observed. Broadly, these granites can be divided into high-Mg# granites (HMGs, the two-mica granites) and low-Mg# granites (LMGs, the Ridang subvolcanic rocks and Yardoi leucogranite). The former has relatively higher contents of total iron, MgO, Mg#, TiO2, P2O5, LREE, Y, Th, Sr, incompatible elements (Cr and Ni) and Eu/Eu* values, and lower contents of SiO2 and Rb/Sr and Rb/Ba ratios, thus is less evolved than the latter. According to recent studies of differentiation processes in silicic magma reservoirs, we proposed that the HMGs represent a congealed crystal mush that was composed of ‘cumulate crystals’ and a trapped interstitial liquid, while the LMGs represent the almost pure liquid that was extracted from the crystal mush. Modeling using the trace elements Sr and Ba shows that the extraction probably occurred when the crystallinity of the mush was ∼ 60%–63%, at least for the most evolved LMGs sample. The HMGs correspond to a residual crystal mush that had a terminal porosity of ∼ 21%–25% filled with a trapped interstitial liquid. Underplating of mafic magmas following slab breakoff of the Neo-Tethys oceanic lithosphere caused partial melting of the amphibolitic lower crust, which had been thickened to ~50 km prior to ~43 Ma
    corecore