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ABSTRACT 

Several new urethane-based dimethacrylates were synthesized, characterized and used to formulate the 

resin composites. Compressive strength (CS) was used as a screen tool to evaluate the mechanical property of the 

formed composites. Flexural strength, diametral tensile strength, water sorption, degree of conversion and shrinkage 

of the composites were also evaluated. The results show that most of the synthesized urethane-based dimethacrylates 

were solid, which are not suitable to dental filling restorations. However, it was found that liquid urethane-based 

dimethacrylates could be derivatized using asymmetrical methacrylate synthesis. Not only the newly synthesized 

urethane-based dimethacrylates showed lower viscosity values but also their constructed composites exhibited 

higher mechanical strengths. Without TEGDMA addition, the new urethane-constructed composites showed 

significantly lower water sorption and shrinkage. 
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INTRODUCTION 

Direct dental filling restoratives or dental resin composites have been used in dental clinics for more than 

50 years since its invention by Dr. Bowen in 1962.1 The traditional liquid resin components in resin composites are a 

mixture of bisphenol A glycidyl methacrylate (BisGMA) and triethylene glycol dimethacrylate (TEGDMA).2 Due to 

its extremely high viscosity, low viscosity TEGDMA is always incorporated in order for BisGMA to be practically 

useful. However, TEGDMA incorporation leads to increased polymerization shrinkage, increased water sorption and 

reduced flexural strength.3-7 Other than BisGMA-based resin composites, alternatives including BisEMA (bisphenol 

A ethoxy methacrylate), UDMA (1,6-bis-(methacryloyloxy-2-ethoxycarbonylamino)-2,4,4-trimethylhexane) and 

other dimethacrylates have also been formulated to form composites and used in dental clinics.2,7 UDMA-based 

composites are found to be the most popular.2 Unlike BisGMA, UDMA-based liquid resin showed a reduced 

viscosity, increased filler loading and greater toughness because of its flexible urethane linkages.8,9 Due to 

commercial availability of a number of diisocyanates - a precursor for synthesis of urethane-based oligomers, the 

attempts have been made to make the urethane-based oligomers or polymers.5,8-13 These include incorporating high 

MW polyurethane methacrylate, adding various side groups to a urethane dimethacrylate, using a urethane to 

partially replace the ester-linkage on BisGMA, using low-shrinkage urethane dimethacrylate monomer, etc.8-12 

Adding various side groups to a urethane dimethacrylate monomer led to the formed polymer to have similar 

physical properties to UDMA.8 Incorporating high molecular weight polyurethane methacrylate showed improved 

toughness and slight reduction in water sorption with compromise of a reduction in mechanical properties as 

compared to BisGMA-based composite.9 Using a low-shrinkage urethane dimethacrylate to dental composite led to 

minimization of polymerization shrinkage.12 Nevertheless, none of the above has ever been formulated without 

addition of TEGDMA or other diluents due to high viscosities or solid states of the synthesized or modified 

oligomers.7 Although commercial UDMA shows a relatively low viscosity as compared to BisGMA, the oligomer 

itself still cannot be used alone when mixing with inorganic glass fillers.2 It was also found that neither TEGDMA- 

nor BisGMA-containing composite is enzymatically stable in oral environment due to easy access of oral 

esterases.13,14 On the other hand, it has been reported that urethane linkages can slow down the enzyme-initiated 

ester-linkage degradation due to unique urethane hydrogen bond intervention.15 In this study, we proposed to use an 

asymmetrical synthesis strategy to synthesize liquid urethane dimethacrylates from different diisocyanates and use 



 

them to formulate the composites without using TEGDMA or other low MW monomers as a diluent, in order to 

achieve the goal of utilizing commercially available diisocyanates to construct a new urethane-based resin 

composite system with reduced shrinkage, decreased water-sorption and improved mechanical strength.   

The objective of this study was to synthesize new low viscosity liquid urethane-based dimethacrylates, use 

them to formulate the resin composite, and evaluate the properties of the formed composite. 

 

MATERIALS AND METHODS 

Materials 

Isophorone diisocyanate (IPDI, mixture of isomers), 4,4’-methylenebis(phenyl isocyanate) (MBPI), 4,4’-

methylenebis(cyclohexyl isocyanate) (MBCI, mixture of isomers), 1,3-bis(1-isocyanato-1-methylethyl)benzene 

(BIMEB), hexamethylene diisocyanate (HDI), hydroxyethyl methacrylate (HEMA), hydroxypropyl methacrylate 

(HPMA, mixture of isomers), triethylene glycol dimethacrylate (TEGDMA), dibutyltin dilaurate (DBTL), 

camphorquinone (CQ), N,N-dimethylaminoethyl methacrylate (DMAEMA), hydroquinone monomethyl ether 

(MEHQ), acetone and diethyl ether were used as received from Sigma-Aldrich Chemical Co (Milwaukee, WI, 

USA). The untreated barium borosilicate glass fillers (Herculite XRV, 0.7 microns) were supplied by Kerr Dental 

Corp (Orange, CA, USA). BisGMA and UDMA were used as received from Esstech Inc (Essington, PA, USA). 

 

Synthesis and characterization 

 Synthesis of urethane-based oligomers is described below. Briefly, to a flask containing BIMEB (0.05 

mol), HEMA (0.05 mol), HPMA (0.05 mol), MEHQ (0.1 mmol) and acetone (30 ml), DBTL (0.5 mmol) was added. 

After stirring at room temperature for 30 min, the reaction mixture was heated to 60 oC for 4 h. Then the mixture 

was cooled down to room temperature and purified with ether. After washing with ether for 3 times and vacuum-

drying overnight, the purified product HEMA-HPMA-1,3-bis(1-methylethyl)benzene dicarbamate (EPBD, yield > 

95%) was obtained. The other studied oligomers were synthesized similarly. The synthesis scheme is shown in Fig. 

1a. The synthesized oligomers were characterized by Fourier transform-infrared (FT-IR) spectroscopy and nuclear 

magnetic resonance (NMR) spectroscopy. The proton NMR (1HNMR) spectra were obtained on a 500 MHz Bruker 

NMR spectrometer (Bruker Avance II, Bruker BioSpin Corporation, Billerica, MA) using deuterated dimethyl 



 

sulfoxide as solvent and FT-IR spectra were obtained on a FT-IR spectrometer (Mattson Research Series FT/IR 1000, 

Madison, WI). 

 

Fig. 1 

 

Evaluation 

Viscosity, degree of conversion, polymerization shrinkage and water-sorption determination 

 The viscosity of the liquid formulated with oligomer or oligomer/diluent was determined at 23 oC using a 

cone/plate viscometer (RVDV-II + CP, Brookfield Eng. Lab. Inc., Middleboro, MA).16 Degree of conversion (DC) 

was measured following the published protocol elsewhere.17 Briefly, a drop of the formulated photo-initiator-

containing oligomer liquid was cast in two KBr crystals, followed by directly scanning in FT-IR or photo-curing 

with blue light (30W, EXAKT 520 Blue Light Polymerization Unit, EXAKT Technologies, Inc., Oklahoma City, 

OK) for 2 min and then scanning in FT-IR. In the acquired FT-IR spectra, the areas under the peaks at 1637 

(assigned to C=C on methacrylate), 1607 cm-1 (to aromatic C=C, internal standard for the BisGMA-based resin) and 

3366 cm-1 (to urethane hydrogen, internal standard for the urethane-based resin) of uncured and cured specimens 

were used to calculate DC. DC (%) was calculated based on the equation [1- (areacured at 1637 cm-1 /areacured for the 

internal standard)/(areauncured at 1637 cm-1 /areauncured for the internal standard)] x 100. The mean values were 

averaged from three readings. The polymerization shrinkage (%) was determined following the published protocol17 

using an equation (1- duncured/dcured) x 100, where dcured and duncured = the densities of cured and uncured composites. 

The densities of the uncured and cured composites were determined by weighing the uncured composite paste 

injected from a calibrated syringe and weighing the cured cylindrical specimens whose volumes were measured in 

water with a calibrated buret, respectively. The mean values were averaged from three readings. Water sorption was 

determined according to ISO 4049. Briefly, disc specimen (15 mm in diameter x 1 mm in thickness) of the resin 

composite was prepared in a metal ring mold with glass slides covered on both sides, followed by photo-curing with 

blue light for 2 min on each side. Upon removal, the specimen was placed in a desiccator and maintained at 37 oC 

until its weight was constant. The weight was recorded as mo. Then the specimen was immersed in distilled water at 

37 oC for 1 week, followed by removing from water, blotting dry, weighing and recording as mt. Water sorption was 

calculated according to the equation (mt – mo)/V, where V = volume of the disc specimen. The mean values were 



 

averaged from three readings. 

 

Mechanical strength determination 

The resin composite was prepared as described previously.18 Briefly, the composite was formulated with a 

two-component system (liquid and powder). The liquid was formulated with dl-camphoroquinone (photo-initiator, 

1% by weight), 2-(dimethylamino)ethyl methacrylate (activator, 2%), and liquid oligomers. The newly synthesized 

liquid oligomers were either formulated alone (100%) or with TEGDMA at 50/50 by weight. Commercial oligomers 

BisGMA and UDMA were formulated with TEGDMA at 50/50. The untreated glass powders (Herculite XRV, 0.7 

microns) were used as fillers and treated with γ-(trimethoxysilyl)propyl methacrylate as described elsewhere.16 A 

filler level at 75% (by weight) was used throughout the study. The reason that we chose 75% is because it is closer 

to the filler content in real natural teeth.2 Specimens were fabricated at room temperature according to the published 

protocol.19 Briefly, the cylindrical specimens were prepared in glass tubing with dimensions of 4 mm in diameter by 

8 mm in length for compressive strength (CS) and 4 mm in diameter by 2 mm in length for diametral tensile strength 

(DTS). The rectangular specimens were prepared in a split Teflon mold with dimensions of 3 mm in width by 3 mm 

in thickness by 25 mm in length for flexural strength (FS) test. All the specimens were exposed to blue light for 2 

min, removed from the mold and conditioned either in distilled water at 37 oC prior to testing. The schematic 

structures of the representative oligomers used in the study are illustrated in Fig. 1b. 

CS, DTS and FS tests were performed on a screw-driven mechanical tester (QTest QT/10, MTS Systems 

Corp., Eden Prairie, MN), with a crosshead speed of 1 mm/min.19 A three-point bending fixture with a span of 20 

mm between supports was used to conduct the FS test. Six specimens were tested to obtain a mean value for each 

material or formulation in each test. CS was calculated using an equation of CS = P/πr2, where P = the load at 

fracture and r = the radius of the cylinder. DTS was determined from the relationship DTS = 2P/πdt, where P = the 

load at fracture, d = the diameter of the cylinder, and t = the thickness of the cylinder. FS was obtained using the 

expression FS = 3Pl/2bd2, where P = the load at fracture, l = the distance between the two supports, b = the breadth 

of the specimen, and d = the depth of the specimen. Compressive yield strength (YS), compressive modulus (CM), 

toughness (T), energy to yield (ETY) and flexural modulus (FM) were obtained from the stress-strain curves of the 

CS and FS tests. 



 

One-way analysis of variance (ANOVA) with the post hoc Tukey-Kramer multiple range test was used to 

determine significant differences of the measured properties among the materials in each group. A level of α = 0.05 

was used for statistical significance. 

 

RESULTS 

Figs 2 and 3 show the FT-IR and 1HNMR spectra of the parent compounds HEMA, HPMA, BIMEB and 

the product EPBD. Table 1 shows detailed characteristic peaks from the FT-IR spectra and chemical shifts from the 

1HNMR spectra. Disappearance of hydroxyl group at 3422-3428 cm-1 as well as isocyanate group at 2256 and 

appearance of urethane peaks at 3363, 1726 and 1519 confirmed the formation of the EPBD. Disappearance of the 

chemical shift at 4.82 (-OH) and appearance of the chemical shifts at 7.65 (-OCONH-) as well as 6.04 and 5.68 

(H2C=C-) confirmed the formation of EPBD. 

 

Fig. 2 

Fig. 3 

Table 1 

 

Table 2 shows the physical states of the synthesized dimethacrylates. All the HEMA-derivatized oligomers 

were solids or paste. Two of the HPMA-derivatives (DPBD and DPID) were liquid and the others were solid. When 

both HEMA and HPMA were used, all the derivatives were either paste or liquids with high or low viscosities. 

Table 3 shows the code, name, ratio and viscosity value of the oligomers and tested formulations. The viscosity 

value was in the decreasing order of BIS > EPMD > EPCD > UD > EPBD > EPID > DPBD > DPID > BIST > 

EPMDT > EPCDT > UDT > EPBDT > EPIDT > DPBDT > DPIDT > T, where there were no statistically 

significant differences between BIST and EPMDT and between EPBDT and EPIDT (p > 0.05). 

 

Table 2 

 

Table 3 

 



 

Fig. 4 shows the CS and viscosity values of the composites composed of the liquid oligomers and 

TEGDMA at 50/50 (wt/wt). CS and viscosity were in the decreasing order of (1) CS (MPa): EPBDT > UDT > 

EPIDT > DPBDT > EPCDT > BIST > EPMDT > DPIDT, where there were no statistically significant differences 

among UDT, EPIDT, DPBDT and EPCDT and among BIST, DPIDT and EPMDT (p > 0.05); and (2) viscosity (cp): 

BIST > EPMDT > EPCDT > UDT > EPBDT > EPIDT > DPBDT > DPIDT, where there were no statistically 

significant differences between BIST and EPMDT and between EPBDT and EPIDT. 

 

Fig. 4 

 

Tables 4 and 5 show detailed compressive properties of three TEGDMA-containing and four urethane-

based composites verse time after aging in water up to 90 days, respectively. These properties include compressive 

yield strength (YS), compressive modulus (M), CS, toughness (T) and energy to yield strength (ETY) accompanying 

with statistical significance in each category. 

 

Table 4 

 

Table 5 

 

Tables 6 and 7 show the YS, M, flexural strength (FS), flexural modulus (FM), and diametral tensile 

strength (DTS) (Table 6), and shrinkage, water sorption and degree of conversion (DC) (Table 7) of the selected 

composites, accompanying with statistical significance in each category. 

 

Table 6 

 

Table 7 

 

DISCUSSION 



 

Urethane-based polymers have shown excellent biocompatibility in cardiovascular applications.20 In 

current dental composite market, there is only one commercially available urethane dimethacrylate (often called 

UDMA) being used in the formulation. Its viscosity (1320 cp) is lower than BisGMA but much higher than 

TEGDMA. Like BisGMA-constructed composites, UDMA has to be mixed with TEGDMA to formulate a workable 

composite. To seek alternative urethane-based dimethacrylates, we synthesized a series of new urethane-based 

oligomers. We utilized five commercially available diisocyanates to react with HEMA or HPMA to form the 

urethane-based dimethacrylates. During the study, we found that if HEMA was used to derivatize diisocyanates, the 

products were solid, except for the IPDI derivative which was an unflowable paste. It is known that to formulate a 

dental composite, resin portion must be liquid with relatively low viscosity so as to form a workable paste with solid 

glass fillers to deliver.2,3 Hence solid or unflowable paste materials are not acceptable to formulation of resin 

composites. On the other hand, if HPMA was used, only DPBD and DPID were liquid but the rest were solid. We 

attribute this to the reason that the formed urethane derivatives are too symmetrical and also strong hydrogen bonds 

from the urethane linkages lead to regularity, which leads to solidification or crystallization of the products. It is 

known that molecules with strong intermolecular interactions and symmetrical molecular structures are easy to form 

crystals.21,22 By carefully analyzing the structure of commercial UDMA which is a viscous liquid at room 

temperature, one can find that UDMA is really a mixture of a pair of optical isomers having a chiral center at C2 

with one methyl substitute on the 9-carbon molecular core, although it is also derivatized with HEMA at both 

ends.2,23 Perhaps it is this chiral center to make UDMA to be a mixture of isomers instead of a pure oligomer, 

leading to formation of a liquid product. Inspired by this analysis, we proposed to synthesize asymmetrical urethane-

based oligomers by placing different length of methacrylate on either end of diisocyanate, i.e., HEMA and HPMA 

were incorporated equally in mole to one diisocyanate molecule. As a result, the newly synthesized oligomers were 

obtained in the form of low or high viscosity liquid or paste, which dramatically changed the feasibility of these 

urethane-based oligomers for dental application from impossible to possible. Among these newly synthesized liquid 

or paste oligomers, we selected the liquid oligomers for initial screening test with CS. During the test, TEGDMA 

was added to dilute the oligomers at 50/50 (wt/wt), following the formulation commonly used in commercial resin 

composites.2,24 EPBDT, EPIDT, DPBDT and DPIDT exhibited lower viscosity values but higher CS values as 

compared to EPMDT and EPCDT. Therefore we decided to focus on EPBD, EPID, DPBD and DPID for further 

investigation. By comparing the viscosity values, we found that the newly synthesized EPBD (452 cp), EPID (353), 



 

DPBD (320) and DPID (250) showed much lower viscosity values as compared to commercial urethane 

dimethacrylate (UDMA, 1320). In other words, without using TEGDMA as a diluent, the four newly synthesized 

oligomers could be used to formulate resin composites directly. With TEGDMA incorporation, the formulations of 

all the four new oligomers showed even lower viscosity values. 

To find out how good the mechanical properties of the newly synthesized resin composite system, CS was 

used as a screening tool for evaluation. It was found that both BIST and UDT showed nearly no changes in CS after 

90 day aging in water at 37 oC but a significant increase from 0 to 1 d is observed for EPBDT. On the other hand, all 

the three composites showed a dramatic increase in modulus after aging in water for 24 h, followed by no further 

changes. This may be explained by the reason that the resin composite samples took a 24 h period of time from 

surface to inside gradually to have water completely absorbed, which allows the modulus to continue to increase due 

to post-cure or dark-cure.25 The other properties showed either no changes or a slight increase or decrease after the 

initial 24 h, meaning that water neither increase nor decrease the strengths. EPBDT was found to be the highest in 

all the measured properties among the three materials after 90 days. 

Since the four newly synthesized urethane derivatives (EPBD, EPID, DPBD and DPID) were low in 

viscosity values, we decided to try to formulate the composites by using these oligomers only without adding any 

TEGDMA. Similar to those TEGDMA-containing composites, almost all the four resin composites showed a 

significant increase in both CS and modulus during the initial 24 h. After that, EPBD and EPID showed nearly no 

changes in CS but continuous increases in modulus up to 30 days. On the other hand, DPBD and DPID showed a 

continuous increase in CS up to 30 days but nearly no changes in modulus. All the other properties showed either no 

change or a slight increase or decrease from 30 to 90 days. EPBD was the highest in all the measured properties, 

followed by EPID, DPBD and DPID. This may be explained by the following structural differences: (1) both EPBD 

and EPID are the ethyl and propyl comprised urethane dimethacrylate. Ethyl group contains -CH2CH2-, which is 

shorter than propyl group (-CH2CH2CH2-), indicating that EPBD or EPID contains relatively more urethane linkages 

and methacrylate groups as compared to DPBD or DPID in a mole of the composite. Obviously only urethane-

linkages and methacrylate groups make a significant contribution to strength enhancement because the former 

provides strong hydrogen bonds whereas the latter provides crosslinked covalent bonds. That may be why EPBD or 

EPID was stronger than DPBD or DPID; (2) EPBD or DPBD contains more rigid aromatic phenyl groups than the 



 

corresponding EPID or DPID which has cyclic hexane groups. That may be why EPBD showed the highest 

compressive properties, followed by EPID, DPBD and DPID. 

Finally, YS, FS, FM, DTS, DC, shrinkage and water sorption of the selected composites were evaluated 

and compared after 7-day aging in water. The reason that we chose 7-day aging is because the results indicate that 

most strength values showed no more changes after 7 days. The EPBD-based composite was found to be the highest 

in almost all the properties except for CS and DTS, followed by the EPID-based one. Its moduli in both compression 

(M) and three-point bending (FM) were outstandingly high as compared to the others, indicating that the EPBD-

based composite is more rigid and has more molecular interactions including covalent and physical crosslinks in it, 

due to its inherent rigidity from the aromatic phenyl groups, strong hydrogen bonding from the urethane linkages 

and covalent crosslink from the dimethacrylates. The EPID was the second to the EPBD due to the fact that the 6-

membrne cyclohexane ring in the EPID is not as rigid as the 6-membrane benzene ring in the EPBD.21 On the other 

hand, the BIST-, UDT- and EPBDT-ones showed lower YS, M, FS and FM values, which is probably attributed to 

the fact that they all contain 50% TEGDMA. It is known that TEGDMA contains three ethylene glycol units and is a 

more flexible and soft molecule.22,26 Both flexibility and water-sorption after water-aging lead to reduced strengths, 

especially moduli (M and FM).27 

Three TEGDMA-containing composites showed much higher polymerization shrinkage values than the 

four new urethane-based composites without TEGDMA, which can be mainly attributed to the high content of 

carbon-carbon double bonds in the TEGDMA-containing composites and may be partially attributed to strong 

urethane hydrogen bonds in the four new urethane-based composites. It is known that conversion of carbon-carbon 

double bonds to single bonds leads to shrinkage.23 The more carbon-carbon double bonds in the system the higher 

the shrinkage would be anticipated. Let’s calculate how many moles of C=C in the studied resins. Assume we have 

one gram of the resin that needs to be calculated. After simple calculation, we found that there exist 5.623, 5.449, 

5.43, 3.86, 4.03, 3.76 and 3.92 mmoles of C=C in one gram of UDT, BIST, EPBDT, EPBD, EPID, DPBD and 

DPID neat resins, respectively. That may be why the three TEGDMA-containing composites showed higher 

shrinkage values. The same explanation is also applied to the reason why the BIST, EPBDT, EPBD and DPBD 

composites showed lower shrinkage values than the UDT, EPID and DPID ones. Regarding water sorption, all the 

TEGDMA-containing composites showed much higher vales than the non-TEGDMA-containing ones. The result is 

consistent with that published elsewhere,8 which can be simply attributed to the nature of TEGDMA because 



 

TEGDMA contains three ethylene glycol units which are considered very hydrophilic.28,29 The more hydrophobic 

parts and more aromatic phenyl groups in the system, the less water-sorption would be expected. That is why the 

EPBDT, EPBD and DPBD composites showed lower water-sorption values than their corresponding counterparts 

(UDT, EPID and DPID). Due to two hydroxyl groups, the BIST composite showed the highest water-sorption 

although BIS also contains two hydrophobic aromatic phenyl groups. In the case of DC, all the three TEGDMA-

containing neat resins showed higher conversion values than the four non-TEGDMA resins. This can be attributed to 

the higher viscosity values of the non-TEGDMA resins because high viscosity can interfere with radical motion and 

chain propagation,30 thus leading to a lower conversion. By comparing EPBDT and EPBD, adding 50% TEGDMA 

significantly increased DC from 57.5% to 70.8%. 

 

CONCLUSIONS  

The new liquid urethane dimethacrylate oligomers with lower viscosity values were synthesized and used 

to formulate the resin composites. It was found that using asymmetrical methacrylate synthesis to form urethane 

dimethacrylates could be a good strategy to make a liquid oligomer. The newly synthesized urethane 

dimethacrylates not only showed lower viscosity values but also their corresponding composites exhibited higher 

mechanical strengths, especially yield strength and modulus. Without TEGDMA addition, the new urethane 

dimethacrylate-constructed composites showed significantly low water sorption and shrinkage, which may 

significantly improve current dental composites. It is possible to formulate the composites only using these newly 

synthesized urethane dimethacrylates without incorporation of diluent TEGDMA or others due to their low 

viscosities. Future studies will include investigating solubility and cytotoxicity of the unreacted oligomers, studying 

the effect of filler content on properties of the composites, and enhancing degree of conversion of the resins and 

composites.  
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Fig. 1. Schematic diagrams for the synthesis of EPBD and the structures of the selected oligomers used in the study: 

A. Synthesis of EPBD; B. Structures of the selected oligomers used in the study. 

 

 

 

 

 



 

 

 

 

 

 

 

Fig. 2. FT-IR spectra for monomers and synthesized oligomer: (i) HEMA, (ii) HPMA, (iii) BIMEB and (iv) EPBD.    

 

 

 

 

 

 

 

 



 

 

 

 

 

Fig. 3. 1HNMR spectra for monomers and synthesized oligomer: (i) HEMA, (ii) HPMA, (iii) BIMEB and (iv) 

EPBD.    

 

 

 



 

 

 

 

 

 

 

 

 

Fig. 4. CS of the composites composed of the liquid oligomers formulating with TEGDMA at 50/50 (by weight) and 

viscosity of the corresponding resin mixtures. Specimens for CS were light-cured for 2 min and conditioned in 

distilled water at 37 oC for 24 h before testing. 

 

 

 

 

 

 

 



 

 

 

 

 
Table 1.  Structure and physical state of the parent compounds and synthesized derivatives 

 

Parent compound Di-HEMA-dicarbamate Di-HPMA-dicarbamate HEMA-HPMA-dicarbamate1 

MBPI Solid Solid Very viscous liquid 

MBCI Solid Solid Viscous liquid 

HDI Solid Solid Paste 

BIMEB Solid Liquid Liquid 
   IPDI Paste Liquid Liquid 

 
1HEMA-HPMA dicarbamate = reaction product of diisocyanate with 0.5 mole of HEMA and 0.5 mole of HPMA 
 
 
 
 
 
 
 
 

Table 2.  Viscosity values of all the tested formulations 

 

Code Name Ratio Viscosity (cp) 
BIS BisGMA 100 N/M1 

UD UDMA 100 1320 (81) 
T TEGDMA 100 N/M 

EPBD HEMA-HPMA-1,3-bis-(1-methylethyl) benzene dicarbamate 100 452 (21) 
EPID HEMA-HPMA-isophorone dicarbamate 100 353 (19) 
DPBD Di-HPMA-1,3-bis-(1-methylethyl) benzene dicarbamate 100 320 (8.0) 
DPID Di-HPMA-isophorone dicarbamate 100 250 (11) 
EPMD HEMA-HPMA-4,4’-methylenebis(phenyl) dicarbamate 100 N/M 
EPCD HEMA-HPMA-4,4’-methylenebis(cyclohexyl) dicarbamate 100 1890 (94) 
BIST BisGMA/TEGDMA 50/50 23.1 (1.8) 

UDT UDMA/TEGDMA 50/50 5.1 (0.9) 

EPBDT EPBD/TEGDMA 50/50 3.2 (0.4) 
EPIDT EPID/TEGDMA 50/50 2.9 (0.6) 
DPBDT DPBD/TEGDMA 50/50 2.5 (0.4) 
DPIDT DPID/TEGDMA 50/50 1.8 (0.1) 
EPMDT EPMD/TEGDMA 50/50 20.9 (2.2) 
EPCDT EPCD/TEGDMA 50/50 9.7 (0.3) 

 
1N/M = the viscosity was either too high or too low to be measured. 
 
 
 
 



 

 
 
 
 
 
 
 
 

Table 3. Compressive properties of the TEGDMA-containing resin composites verse time 

 

Material Time YS [MPa] M [GPa] CS [MPa] T [KNmm] ETY [Nmm] 
 0d 72.7 (2.9) 3.63 (0.18) 300.1 (13)j 1.66 (0.14)o 83.0 (2.9) 

BIST 1d 110.3 (3.9)a,1 5.38 (0.11) 298.4 (4.7)j 1.50 (0.07)p 138.1 (10) 
 7d 109.2 (2.8)a 4.99 (0.17)e 304.5 (19)j 1.55 (0.05)o,p 110.2 (6.2)u 

 30d 108.5 (4.3)a 5.01 (0.29)e 307.7 (10)j 1.63 (0.11)o 107.7 (4.5)u 

 90d 108.6 (1.7)a 5.29 (0.07) 306.5 (5.6)j 1.59 (0.13)o,p 121.3 (3.4) 
       
 0d 83.2 (0.9) 4.05 (0.16) 310.9 (4.7)k 1.79 (0.04)q 99.2 (3.3)v 

UDT 1d 120.3 (12) 4.96 (0.28) 327.4 (10)l 1.91 (0.12)r 185.3 (26) 
 7d 105.2 (1.8) 4.82 (0.27)f,g 326.5 (7.1)l 1.88 (0.06)r 155.7 (3.3) 
 30d 94.5 (2.5)b 4.76 (0.09)f 323.2 (4.1)l 1.70 (0.15)q 105.4 (8.9)v 

 90d 93.8 (4.5)b 4.87 (0.06)g 310.2 (3.1)k 1.51 (0.02) 102.2 (14)v 

       
 0d 83.2 (2.6) 3.76 (0.11) 289.7 (3.9) 1.64 (0.03) 103.9 (5.6) 

EPBDT 1d 112.1 (9.7)c 5.47 (0.12)h 345.1 (4.1)m 2.02 (0.04) 146.8 (19)w 

 7d 115.6 (3.3)c 5.50 (0.06)h,i 348.1 (11)m,n 1.90 (0.14)s 145.2 (2.6)w 

 30d 121.0 (1.6)c,d 5.56 (0.05)i 355.5 (4.2)n 1.87 (0.04)s,t 147.6 (3.4)w 

 90d 125.4 (4.3)d 5.73 (0.02) 347.5 (7.5)n 1.79 (0.11)t 154.8 (11)w 

 
1Entries are mean values with standard deviations in parentheses and the mean values with the same letter in each 
category were not significantly different (p > 0.05). Specimens were conditioned in distilled water at 37 °C prior to 
testing. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
 
 
 
 
 
 
 
 

Table 4. Compressive properties of four new resin composites verse time1 

 

Material Time YS [MPa] M [GPa] CS [MPa] T [KNmm] ETY [Nmm] 
 0d 89.6 (2.4) 4.80 (0.12) 275.5 (8.4) 2.09 (0.07) 117.8 (6.7) 

EPBD 1d 126.4 (6.7)a 6.01 (0.11) 315.3 (9.7)l 2.01 (0.17) 173.8 (11)v 

 7d 123.2 (6.2)a 6.18 (0.34) 323.2 (9.1)l 1.69 (0.17)p 160.2 (4.6)v 

 30d 120.9 (3.6)a 6.34 (0.32) 320.4 (6.6)l 1.63 (0.07)p 158.0 (8.4)v 

 90d 128.8 (3.4)a 6.45 (0.45) 325.2 (11)l 1.67 (0.08)p 164.1 (15)v 

       
 0d 90.1 (4.3) 4.60 (0.45) 251.0 (7.4) 1.45 (0.20)q 117.3 (12) 

EPID 1d 115.9 (2.9)b 5.34 (0.07) 317.6 (6.7)m 1.90 (0.04) 155.5 (8.1)w 

 7d 121.0 (5.4)b,c 5.71 (0.13) 313.4 (11)m 1.61 (0.09)r 151.2 (14)w 

 30d 127.9 (5.5)c,d 6.01 (0.21) 315.3 (10)m 1.58 (0.05)r,s 152.5 (6.7)w 

 90d 134.6 (5.9)d 6.13 (0.19) 314.5 (18)m 1.51 (0.13)q,s 158.2 (8.8)w 

       
 0d 99.2 (7.9) 5.38 (0.33)i 236.2 (7.4) 1.68 (0.13)t 141.5 (4.5)x 

DPBD 1d 135.2 (4.1)e 5.41 (0.15)i,j 255.0 (9.2)n 1.64 (0.09)t 195.9 (5.7) 
 7d 128.1 (5.2)e,f 5.33 (0.18)i 271.1 (8.4) 1.68 (0.10)t 151.3 (6.4) 
 30d 116.8 (3.1)g 5.47 (0.31)j 290.2 (9.3) 1.73 (0.08)t 147.8 (6.8)x 

 90d 122.7 (3.3)f,g 5.61 (0.25) 255.8 (8.5)n 1.65 (0.09)t 149.1 (5.9)x 

       
 0d 83.9 (5.1) 4.19 (0.14) 197.6 (5.2) 1.24 (0.05) 117.4 (5.9) 

DPID 1d 111.0 (5.3)h 4.67 (0.15) 225.1 (19) 1.37 (0.18)u 143.2 (8.6)y 

 7d 104.5 (7.2)h 5.08 (0.07)k 248.9 (7.4)o 1.56 (0.11) 138.2 (17)y 

 30d 103.2 (4.2)h 5.08 (0.30)k 265.3 (7.8) 1.64 (0.18) 134.1 (8.6)y 

 90d 120.1 (2.2) 5.03 (0.11)k 252.4 (6.5)o 1.38 (0.07)u 138.1 (8.3)y 

 
1EPBD, EPID, DPBD and DPID = four newly synthesized resin-composed composites without TEGDMA addition. 
Specimens were conditioned in distilled water at 37 °C prior to testing. 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
 
 
 

Table 5.  Comparison of the mechanical properties of the selected resin composites1 

 

Materials YS [MPa] M [GPa] CS [MPa] FS [MPa] FM [GPa] DTS [MPa] 
BIST 109.2 (2.8)a,b 4.99 (0.17)d,e 304.5 (19)g 84.7 (16)i,j 6.03 (0.24)n 46.8 (2.8)p 

UDT 105.2 (1.8)a 4.82 (0.27)d 326.5 (7.1)h 99.4 (7.3)k 5.82 (0.96)o 68.7 (5.7) 
EPBDT 115.6 (3.3)b,c 5.50 (0.06)f 348.1 (11) 111.3 (13)l 6.69 (0.41) 41.2 (2.5)p 

EPBD 123.2 (6.2)c 6.18 (0.34) 323.2 (9.1)h 121.9 (11)l 7.31 (0.43) 58.9 (2.1)q 

EPID 121.0 (5.4)c 5.71 (0.13) 313.4 (11)g,h 91.1 (4.7)i,k 6.22 (0.32) 45.2 (1.4)p 

DPBD 118.1 (5.2)c 5.33 (0.18)f 271.1 (8.4) 72.1 (4.1)j 6.54 (0.36) 53.6 (1.6)q 

DPID 104.5 (7.2)a 5.08 (0.07)e 248.9 (7.4) 71.4 (3.9)j 5.90 (0.64)n,o 46.2 (6.3)p 

 
1All the materials and their formulations were the same as those described in Tables 3 and 4. Specimens were 
conditioned in distilled water at 37 oC for 7 days prior to testing. 
 
 
 
 
 
 

Table 6.  Comparison of the shrinkage, water sorption and DC of the selected resin composites1 
 

Materials Shrinkage (%) Water sorption [µg/mm3] DC (%) 

BIST 3.60 (0.31) 24.1 (3.4)b 73.2 (0.8)d 

UDT 4.36 (0.39) 21.9 (2.5)b 73.7 (0.6)d 

EPBDT 3.99 (0.14) 17.4 (1.9) 70.8 (1.1)d 

EPBD 1.85 (0.06)a,3  7.0 (1.3)c 57.5 (0.7)e 

EPID 2.17 (0.09) 8.0 (0.7)c 48.5 (1.3)f 

DPBD 1.69 (0.11) 6.7 (1.7)c 54.8 (0.9)e 

DPID 1.96 (0.13)a 7.2 (0.8)c 47.2 (1.3)f 

 
1All the materials and their formulations were the same as those described in Table 5. Both shrinkage and water 
sorption were measured with the composite specimens. DC = degree of conversion, which was measured with the 
neat resin specimens without glass filler addition. 
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