96 research outputs found

    Lipid antioxidants: free radical scavenging versus regulation of enzymatic lipid peroxidation

    Get PDF
    The essentiality of polyunsaturated lipids makes membranes susceptible to peroxidative modifications. One of the most contemporary examples includes selective peroxidation of cardiolipin in mitochondria of cells undergoing apoptosis. Cardiolipin peroxidation products are required for the mitochondrial membrane permeabilization, release of pro-apoptotic factors and completion of the cell death program. Therefore, search for effective inhibitors of cardiolipin peroxidation is critical to discovery and development of anti-apoptotic antioxidants. Mitochondria contain significant amounts of α-tocopherol, a well known scavenger of reactive free radicals. In the present study, we used an oxidative lipidomics approach to evaluate the effect of α-tocopherol and its homologues with different lengths of the side-chain such as 2,5,7,8,-tetramethyl-2(4-methylpentyl)-6-chromanol and 2,2,5,7,8-pentamethyl-6-chromanol, on oxidation of tetralinoleoyl cardiolipin induced by cytochrome c in the presence of hydrogen peroxide. Our data indicate that vitamin E homologues inhibit not only accumulation of tetralinoleoyl cardiolipin hydroperoxides but also hydroxy-derivatives of tetralinoleoyl cardiolipin formed in the enzymatic peroxidase half-reaction catalyzed by cytochrome c. This suggests that protective effects of vitamin E homologues against tetralinoleoyl cardiolipin peroxidation catalyzed by cytochrome c/hydrogen peroxide are realized largely due to their effects on the peroxidase activity of cytochrome c towards tetralinoleoyl cardiolipin rather than via their scavenging activity

    Business administration as a basis for development of global entrepreneurship

    Get PDF
    The purpose of the article is to determine the role and meaning of business administration in development of global entrepreneurship. The work uses the proprietary methodology of evaluation of global competitiveness of enterprise and the proprietary methodology of evaluation of efficiency of business administration of enterprise, as well as method of correlation analysis. The authors determine the role of business administration in management of factors of development of global enterprise and offer the proprietary structural and logical model of organization of the process of business administration of global enterprise as a perspective tool for provision of global competitiveness of business and development of global entrepreneurship on the whole. The authors come to the conclusion that business administration is a basis for development of global entrepreneurship and plays an important role in this process, which consists in managing other internal and external factors of functioning of global business.peer-reviewe

    Excessive phospholipid peroxidation distinguishes ferroptosis from other cell death modes including pyroptosis

    Get PDF
    Lipid peroxidation (LPO) drives ferroptosis execution. However, LPO has been shown to contribute also to other modes of regulated cell death (RCD). To clarify the role of LPO in different modes of RCD, we studied in a comprehensive approach the differential involvement of reactive oxygen species (ROS), phospholipid peroxidation products, and lipid ROS flux in the major prototype modes of RCD viz. apoptosis, necroptosis, ferroptosis, and pyroptosis. LC-MS oxidative lipidomics revealed robust peroxidation of three classes of phospholipids during ferroptosis with quantitative predominance of phosphatidylethanolamine species. Incomparably lower amounts of phospholipid peroxidation products were found in any of the other modes of RCD. Nonetheless, a strong increase in lipid ROS levels was detected in non-canonical pyroptosis, but only during cell membrane rupture. In contrast to ferroptosis, lipid ROS apparently was not involved in non-canonical pyroptosis execution nor in the release of IL-1 beta and IL-18, while clear dependency on CASP11 and GSDMD was observed. Our data demonstrate that ferroptosis is the only mode of RCD that depends on excessive phospholipid peroxidation for its cytotoxicity. In addition, our results also highlight the importance of performing kinetics and using different methods to monitor the occurrence of LPO. This should open the discussion on the implication of particular LPO events in relation to different modes of RCD

    Lipid homeostasis and inflammatory activation are disturbed in classically activated macrophages with peroxisomal β-oxidation deficiency

    Get PDF
    Macrophage activation is characterized by pronounced metabolic adaptation. Classically activated macrophages show decreased rates of mitochondrial fatty acid oxidation and oxidative phosphorylation and acquire a glycolytic state together with their pro-inflammatory phenotype. In contrast, alternatively activated macrophages require oxidative phosphorylation and mitochondrial fatty acid oxidation for their anti-inflammatoryfunction. Although it is evident that mitochondrial metabolism is regulated during macrophage polarization and essential for macrophagefunction, little is known on the regulation and role of peroxisomal -oxidation during macrophage activation. In this study, we show that peroxisomal -oxidation is strongly decreased in classically activated bone-marrow-derived macrophages (BMDM) and mildly induced in alternatively activated BMDM. To examine the role of peroxisomal -oxidation in macrophages, we used Mfp2(-/-) BMDM lacking the key enzyme of this pathway. Impairment of peroxisomal -oxidation in Mfp2(-/-) BMDM did not cause lipid accumulation but rather an altered distribution of lipid species with very-long-chain fatty acids accumulating in the triglyceride and phospholipid fraction. These lipid alterations in Mfp2(-/-) macrophages led to decreased inflammatory activation of Mfp2(-/-) BMDM and peritoneal macrophages evidenced by impaired production of several inflammatory cytokines and chemokines, but did not affect anti-inflammatory polarization. The disturbed inflammatory responses of Mfp2(-/-) macrophages did not affect immune cell infiltration, as mice with selective elimination of MFP2 from myeloid cells showed normal monocyte and neutrophil influx upon challenge with zymosan. Together, these data demonstrate that peroxisomal -oxidation is involved in fine-tuning the phenotype of macrophages, probably by influencing the dynamic lipid profile during macrophage polarization

    C-ferroptosis is an iron-dependent form of regulated cell death in cyanobacteria

    Get PDF
    Ferroptosis is an oxidative and iron-dependent form of regulated cell death (RCD) recently described in eukaryotic organisms like animals, plants, and parasites. Here, we report that a similar process takes place in the photosynthetic prokaryote Synechocystis sp. PCC 6803 in response to heat stress. After a heat shock, Synechocystis sp. PCC 6803 cells undergo a cell death pathway that can be suppressed by the canonical ferroptosis inhibitors, CPX, vitamin E, Fer-1, liproxstatin-1, glutathione (GSH), or ascorbic acid (AsA). Moreover, as described for eukaryotic ferroptosis, this pathway is characterized by an early depletion of the antioxidants GSH and AsA, and by lipid peroxidation. These results indicate that all of the hallmarks described for eukaryotic ferroptosis are conserved in photosynthetic prokaryotes and suggest that ferroptosis might be an ancient cell death program.Fil: Aguilera, Anabella. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Mar del Plata. Instituto de Investigaciones en Biodiversidad y BiotecnologĂ­a; ArgentinaFil: Berdun, Federico Juan. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Mar del Plata. Instituto de Investigaciones en Biodiversidad y BiotecnologĂ­a; ArgentinaFil: Bartoli, Carlos Guillermo. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - La Plata. Instituto de FisiologĂ­a Vegetal. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Instituto de FisiologĂ­a Vegetal; ArgentinaFil: Steelheart Molina, Maria Charlotte. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - La Plata. Instituto de FisiologĂ­a Vegetal. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Instituto de FisiologĂ­a Vegetal; ArgentinaFil: Alegre, MatĂ­as. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - La Plata. Instituto de FisiologĂ­a Vegetal. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Instituto de FisiologĂ­a Vegetal; ArgentinaFil: Bayir, HĂĽlya. University of Pittsburgh; Estados UnidosFil: Tyurina, Yulia Y.. University of Pittsburgh; Estados UnidosFil: Kagan, Valerian E.. University of Pittsburgh; Estados UnidosFil: Salerno, Graciela Lidia. FundaciĂłn para Investigaciones BiolĂłgicas Aplicadas; ArgentinaFil: Pagnussat, Gabriela Carolina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Mar del Plata. Instituto de Investigaciones BiolĂłgicas. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones BiolĂłgicas; ArgentinaFil: Martin, MarĂ­a Victoria. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Mar del Plata. Instituto de Investigaciones en Biodiversidad y BiotecnologĂ­a; Argentin

    Phosphatidylserine Targets Single-Walled Carbon Nanotubes to Professional Phagocytes In Vitro and In Vivo

    Get PDF
    Broad applications of single-walled carbon nanotubes (SWCNT) dictate the necessity to better understand their health effects. Poor recognition of non-functionalized SWCNT by phagocytes is prohibitive towards controlling their biological action. We report that SWCNT coating with a phospholipid “eat-me” signal, phosphatidylserine (PS), makes them recognizable in vitro by different phagocytic cells - murine RAW264.7 macrophages, primary monocyte-derived human macrophages, dendritic cells, and rat brain microglia. Macrophage uptake of PS-coated nanotubes was suppressed by the PS-binding protein, Annexin V, and endocytosis inhibitors, and changed the pattern of pro- and anti-inflammatory cytokine secretion. Loading of PS-coated SWCNT with pro-apoptotic cargo (cytochrome c) allowed for the targeted killing of RAW264.7 macrophages. In vivo aspiration of PS-coated SWCNT stimulated their uptake by lung alveolar macrophages in mice. Thus, PS-coating can be utilized for targeted delivery of SWCNT with specified cargoes into professional phagocytes, hence for therapeutic regulation of specific populations of immune-competent cells
    • …
    corecore