31 research outputs found

    Coupled atmosphere–mixed layer ocean response to ocean heat flux convergence along the Kuroshio Current Extension

    Get PDF
    Author Posting. © The Author(s), 2010. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Climate Dynamics 36 (2011): 2295-2312, doi:10.1007/s00382-010-0764-8.The winter response of the coupled atmosphere-ocean mixed layer system to anomalous geostrophic ocean heat flux convergence in the Kuroshio Extension is investigated by means of experiments with an atmospheric general circulation model coupled to an entraining ocean mixed layer model in the extra-tropics. The direct response consists of positive SST anomalies along the Kuroshio Extension and a baroclinic (low-level trough and upper-level ridge) circulation anomaly over the North Pacific. The low-level component of this atmospheric circulation response is weaker in the case without coupling to an extratropical ocean mixed layer, especially in late winter. The inclusion of an interactive mixed layer in the tropics modifies the direct coupled atmospheric response due to a northward displacement of the Pacific Inter-Tropical Convergence Zone which drives an equivalent barotropic anomalous ridge over the North Pacific. Although the tropically-driven component of the North Pacific atmospheric circulation response is comparable to the direct response in terms of sea level pressure amplitude, it is less important in terms of wind stress curl amplitude due to the mitigating effect of the relatively broad spatial scale of the tropically-forced atmospheric teleconnection.We gratefully acknowledge financial support from NOAA’s Office of Global Programs (grant to C. Deser and Y.-O. Kwon). Y.-O. Kwon is also supported through the Claudia Heyman Fellowship of the WHOI Ocean Climate Change Institute

    Comparing isopycnal eddy diffusivities in the Southern Ocean with predictions from linear theory

    No full text
    We show that the potential vorticity diffusivity predicted by linear stability analysis (LSA), is the same as a linearized version of Lagrangian cross stream isopycnal diffusivity. Both can be written in terms of the same expression the product of the eddy kinetic energy (EKE) and the integral time scale that involves the Lagrangian decay scale gamma or the growth rate omega(i) of the most unstable wave, and a frequency that is related to the difference of the mean flow speed and real part of the phase speed of the unstable waves. Diffusivities from LSA are compared to Lagrangian isopycnal eddy diffusivities estimated from more than 700,000 numerical particles in the Southern Ocean of an eddying model. They show different spatial dependency. LSA predicts eddy diffusivities that are enhanced at the steering level where the mean flow speed equals the phase speed of the unstable waves. In contrast, Lagrangian diffusivities exhibit no clear steering level maxima, but are instead surface intensified in many places. The differences between the Lagrangian and diffusivities from LSA can be understood because EKE predicted from LSA differs from the simulated one, and because the estimated decay scale gamma is On average about 4 times larger than the largest linear growth rate. The diagnosed Lagrangian integral time scale has maxima at the depth where the mean flow speed equals the phase speed of the most unstable wave, but the diffusivity maxima are shifted towards the surface because the simulated EKE decreases rapidly with depth. Possibilities for a simple parameterization for the diffusivity are discussed. (C) 2015 Elsevier Ltd. All rights reserved

    A large discontinuity in the mid-twentieth century in observed global-mean surface temperature

    No full text
    Data sets used to monitor the Earth's climate indicate that the surface of the Earth warmed from ~1910 to 1940, cooled slightly from ~1940 to 1970, and then warmed markedly from ~1970 onward. The weak cooling apparent in the middle part of the century has been interpreted in the context of a variety of physical factors, such as atmosphere-ocean interactions and anthropogenic emissions of sulphate aerosols. Here we call attention to a previously overlooked discontinuity in the record at 1945, which is a prominent feature of the cooling trend in the mid-twentieth century. The discontinuity is evident in published versions of the global-mean temperature time series, but stands out more clearly after the data are filtered for the effects of internal climate variability. We argue that the abrupt temperature drop of ~0.3°C in 1945 is the apparent result of uncorrected instrumental biases in the sea surface temperature record. Corrections for the discontinuity are expected to alter the character of mid-twentieth century temperature variability but not estimates of the century-long trend in global-mean temperatures
    corecore