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1. Introduction: The International
Research Institute for Climate
Prediction

Until fairly recently, no method was available for
reliably predicting the variability of the global climate
system on seasonal to interannual timescales.
However, beginning in the mid-1960s, observational
and diagnostic studies of the ocean and atmosphere
began to make it clear that certain behaviors of the
coupled system might indeed be predictable, includ-
ing in particular the El Niño–Southern Oscillation

(ENSO) phenomenon (see, among many others,
Bjerknes 1966, 1969, 1972; Davis 1976; Horel and
Wallace 1981; Wallace and Gutzler 1981; Rasmusson
and Carpenter 1982; Shukla and Wallace 1983;
Philander 1983; Latif et al. 1998; Neelin et al. 1998;
Stockdale et al. 1998a). In 1985, the World Climate
Research Programme (WCRP) initiated the Tropical
Oceans Global Atmosphere (TOGA) program (WCRP
1985). Under TOGA, increased attention was devoted
to the development of physical/mathematical models
of the ocean and atmosphere in the tropical Pacific
Ocean, as well as to the establishment of observing
systems to provide the data such models required. As
TOGA progressed, the Tropical Atmosphere Ocean
Array was designed and implemented (Hayes et al.
1991; McPhaden et al. 1998), and models began to
show evidence of the capability to make useful real-
time predictions (Cane and Zebiak 1985; Cane et al.
1986).

By 1990, research results inspired an international
group of scientists to prepare a plan for the Interna-
tional Research Institute for Climate Prediction (IRI).
This plan outlined the scientific background justify-
ing the creation of the institute as well as the benefits
to be derived from its implementation. Following the
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International Forum on Forecasting El Niño: Launch-
ing an International Research Institute (6–8 Novem-
ber 1995, Washington, D.C.), the National Oceanic
and Atmospheric Administration (NOAA) committed
itself to support an interim IRI, and to facilitate the
transition to a multinational institute. The IRI was
established in late 1996 at Lamont-Doherty Earth
Observatory and Scripps Institution of Oceanography
(SIO) (Carson 1998).

The mission of the IRI is to foster the improve-
ment, production, and use of global forecasts of sea-
sonal to interannual climate variability for the explicit
benefit of society. To accomplish this mission, the IRI,
in coordination and collaboration with the interna-
tional climate research and applications communities,
develops and implements

• improved mathematical models of the physical cli-
mate system;

• better techniques for forecasting seasonal to
interannual variations in the physical climate
system;

• techniques for monitoring such variations, and for
disseminating climate monitoring and forecasting
information products to potential users;

• more advanced applications of forecasts and other
climate information products; and

• methods of training potential users of IRI products
so as to ensure the existence of a growing cadre of
enthusiastic proponents ready to apply such infor-
mation to the benefit of their societies.

The IRI consists of four divisions and a training
program. These include the Modeling Research Divi-
sion (MRD), Experimental Forecasting Division
(EFD), Climate Monitoring and Dissemination Divi-
sion (CMD), and Applications Research Division
(ARD). The Modeling Research Division aims to pro-
vide a continually evolving suite of tools representing
the state of the art for seasonal to interannual climate
prediction and forecast applications. In the near term,
the MRD will focus its efforts on the development and
implementation of better models of the coupled ocean–
land–atmosphere system, improving methods of ocean
data assimilation, and developing methods for using
ensembles of realizations from individual models as
well as from multiple models, in collaboration with the
Experimental Forecast Division. The Experimental
Forecast Division, currently located at SIO, is the op-
erational forecasting arm of the IRI. Its mission is to
produce regularly the most useful and accurate pos-

sible forecasts of seasonal to interannual climate vari-
ability at global and regional scales. The division took
an active role in providing seasonal climate forecasts
throughout the 1997/98 El Niño episode. The Climate
Monitoring and Dissemination Division aims to pro-
vide the formal distribution of IRI products, empha-
sizing service to the applications community. The
CMD maintains the datasets required to permit IRI
scientists to monitor current climatic conditions and
conduct their research, and distributes IRI forecasts
and other products, both directly to users in the Cli-
mate Information Digest and via the IRI Web site. The
climate information digest contains a synopsis of cur-
rent climatic conditions, a description of the most re-
cent IRI forecasts, and a summary of the impacts of
both current and expected events on several applica-
tions sectors. The aim of the Applications Research
Division is to maximize the utility and accessibility
of climate forecast products for societies around the
world, building on the efforts initiated by NOAA
(Buizer et al. 1999). It strives to facilitate the use of
IRI forecast guidance products to improve planning
and decision making in climate-sensitive sectors, and
to demonstrate how climate information can enhance
sustainable economic growth and reduce vulnerabil-
ity to climate-related hazards including extreme events
and disease outbreaks. The training program is an out-
reach effort whose ultimate purpose is to increase the
global awareness of the need for IRI products. It seeks
to create a cadre of international experts, from a vari-
ety of economic and social sectors, each of whom un-
derstands and is able to make efficient application of
the kinds of climate products that the IRI generates.

The principal purpose of this paper is to describe
the developing IRI climate forecast system and its
performance during the intense El Niño of 1997/98.
This introduction is followed by an explanation of the
historical and intellectual basis for the IRI EFD fore-
cast process. The modeling methodology and the statisti-
cal tools used are described in sections 3 and 4. Section
5 discusses the validation of the forecast process, while
section 6 describes the future plans for the operation.

2. Forecasting at the IRI Experimental
Forecasting Division

The IRI operational forecast system is based on the
premise that the atmospheric response to sea surface
temperature (SST) variability provides the potential to
produce forecasts of seasonal climate anomalies for
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many areas of the world (Palmer and Anderson 1994;
Shukla 1998). Recent advances in understanding and
modeling of the global ocean–atmosphere system have
permitted the production of such forecasts on a regu-
lar basis. A key development has been the ability dem-
onstrated in the mid-1980s to forecast SSTs in the
equatorial Pacific Ocean with lead times of as much
as a year (Zebiak and Cane 1987), although lead times
of about six months are now considered more realis-
tic (Barnston et al. 1994, 1999a). The El Niño phenom-
enon constitutes the strongest signal in the interannual
variability of global SST and exhibits major effects on
climate variability in many parts of the world
(Ropelewski and Halpert 1987, 1989; Halpert and
Ropelewski 1992; Trenberth et al. 1998). However, its
effects in some areas are far less robust, and the cli-
mate in these parts of the world may instead be affected
by SST variability in ocean basins other than the Pa-
cific. Seasonal forecasts of global atmospheric anoma-
lies therefore depend upon an ability to forecast SSTs
in areas beyond the equatorial Pacific.

The development of the 1997/98 El Niño provided
an ideal opportunity to generate seasonal climate fore-
casts on an operational basis. A successful forecast of
an El Niño had first been provided in 1986 (Cane et al.
1986). The 1991/92 event was again forecast success-
fully, notwithstanding some false alarms that were
issued in 1990 (Mo 1993; Ropelewski et al. 1993).
Forecasts of the 1997/98 event were unique, however,
in that for the first time forecasts of the event, and of
seasonal atmospheric climate anomalies, were made
widely available to the general public (Barnston et al.
1999b; Buizer et al. 1999). Forecasts of a strong
El Niño were available to the public as early as June
1997 (Barnston et al. 1999a). The IRI EFD took an
active role in forecasting this El Niño and global cli-
mate anomalies during the 1997/98 season. In this
paper, some of the tools and methods that contributed
to the climate forecasts issued by the IRI EFD during
the height of the 1997/98 El Niño are described.

3. Two-tiered dynamical modeling

The IRI EFD uses a two-tiered approach to dy-
namical seasonal climate prediction (Fig. 1): SST fore-
casts are produced first, which then serve as the lower
boundary condition forcing for an atmospheric gen-
eral circulation model (AGCM) (Bengtsson et al.
1993; Palmer and Anderson 1994). The procedure for
constructing a global SST field for the upcoming

season(s) is not obvious, however, since the models
used to produce forecasts of El Niño/La Niña gener-
ally are confined to the tropical Pacific Ocean. For
many parts of the world, even those places where cli-
mate variability apparently is related strongly to
El Niño/La Niña SSTs, it is not possible to simulate
correctly the climate variability with SST anomalies
defined only in the tropical Pacific. For example, In-
dian Ocean SST anomalies are critical for simulating
the proper climate signal over eastern Africa (Goddard
and Graham 1999). Similarly, the tropical Atlantic
Ocean has an important modulating effect on El Niño’s
impact over South America (Moura and Shukla 1981;
Wallace et al. 1998) and western Africa (Lamb and
Peppler 1991; Rowell et al. 1995). Hence predicted
SSTs must be prescribed over all tropical ocean basins.

a. Global sea surface temperature forecasts
The simplest SST prediction involves the persis-

tence of the current observed SST anomalies on top
of the observed seasonal cycle. Retrospective 3-month
forecasts indicate that in many areas and most seasons

FIG. 1. Schematic diagram illustrating the structure of the IRI
two-tiered numerical forecast system during the 1997/98 El Niño.
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this approach to SST prediction is almost as skillful
as if one had known the true SST values for the fore-
cast period. Thus persisted SST anomaly forecasts are
useful for short-term climate forecasting, particularly
when there is no significant ENSO variability present
and the evolution of SSTs may be difficult to deter-
mine. For longer lead times, and when an ENSO ex-
treme of either sign is developing or decaying, such
as in 1997 and 1998, it is preferable to use a predic-
tion of evolving SST anomalies.

Operational forecasts of SST anomalies for the
tropical Pacific were obtained from the National Cen-
ters for Environmental Prediction (NCEP) coupled
model (Ji et al. 1998). The model Pacific, and hence
the SST forecasts, are constrained to cover the area
from 30°N to 25°S and from 120°E to 70°W. The
ocean model is initialized by assimilating observed
surface and subsurface data. The ocean model is ini-
tialized by assimilating observed surface and subsur-
face data. The ocean model is then coupled to the
atmospheric model, and the coupled model integra-
tion extends 6 months into the future. The coupled
model uses stress, heat, and salinity flux anomalies
obtained from the coupled interaction between ocean
and atmosphere models added to observed climato-
logical fluxes to provide the forcing to the OGCM and
AGCM. The resulting SST fields are statistically cor-
rected offline.

These forecasts of SST anomalies for the tropical
Pacific Ocean were supplemented by statistical fore-
casts of SSTs for the Indian and Atlantic Oceans. The
Indian Ocean usually warms during El Niño and cools
during La Niña episodes (Pan and Oort 1983; Cadet
1985; Meehl 1993; Hastenrath et al. 1993; Latif et al.
1994; Latif and Barnett 1995; Nagai et al. 1995;
Nicholson 1997; Landman and Mason 1999), with the
tropical Pacific SST anomalies leading by approxi-
mately three months (Nicholson 1997; Goddard and
Graham 1999). A canonical correlation analysis
(CCA) model has been developed on the basis of this
lagged association, relating Indian Ocean SSTs to
SSTs in the tropical Pacific Ocean. This method of
predicting Indian Ocean SST anomalies is intended
only as an interim solution until such time as high
quality global SST predictions become available from
coupled ocean–atmosphere models. Similarly, the
tropical Atlantic Ocean evolution currently is forecast
using a CCA model that was developed at Centro de
Previsão de Tempo e Estudos Climáticos (CPTEC)/
Instituto Nacional de Pesquisas Espaciais (INPE) in
Brazil (Pezzi et al. 1998). In the mid- and high lati-

tudes of all three oceans, observed sea surface tempera-
ture anomalies were slowly damped with an e-folding
time of 90 days.

b. Global atmospheric forecasts
Because of the requirement to provide global fore-

casts, a multimodel ensemble approach has been
adopted so that the weaknesses of one AGCM can be
offset by the strengths of another. In the initial selec-
tion of AGCMs, a wide range of models was consid-
ered with the aim of identifying a manageable subset
that could be used in the production of the operational
forecasts. The criterion used was the models’ ability
to simulate observed climate variability; this skill can
be tested in a number of ways. One method used to
assess the skill of the ensemble mean variability in-
volves a comparison of the primary modes of observed
and simulated variability. The first two empirical or-
thogonal functions (EOFs) from the observed data are
calculated for various continental-scale regions, and
the model simulations are projected onto those. A cor-
relation matrix is then formed between the actual (ob-
served) and projected (model) EOF amplitudes to
determine how much of the dominant observed vari-
ability is captured by the model. Various performance
scores can be calculated to determine the percentage
variability that can be extracted from the model fields
and has helped determine which AGCMs would be
chosen for operational work.

After testing a wide range of AGCMs, the IRI EFD
selected three to be used operationally: ECHAM3
(Max Planck Institute), MRF9 (NCEP), and CCM3
(National Center for Atmospheric Research). While
these three models perform approximately equally
well on average, differences in model performance for
specific variables in different regions and seasons are
evident. Since the IRI EFD produces forecasts for the
international community, it was essential that a
multimodel ensemble approach be taken. All three
models were run at T42 resolution (approximately 2.8°
of latitude and longitude) with vertical resolutions of
19, 18, and 18 levels, respectively, and all were forced
with both persisted and forecast SSTs. Predictions
using persisted SSTs were confined to 3 months be-
cause of the rapid loss of skill at longer leads, but pre-
dictions out to 6 months were generated using forecast
SST anomalies. A comparison of scenarios based on
persisted versus evolving SST anomalies provided
information on the sensitivity of the climate system
to the evolving boundary layer forcing and thus facili-
tated the interpretation of AGCM predictions.
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Each month an ensemble of at least 10 runs was
computed for each SST scenario and each AGCM,
thus providing a total ensemble size of more than 60.
Debate still exists over the optimal number of en-
semble members, but a compromise must be found be-
tween an acceptable number and the amount of
computer time required to generate the ensemble. In
most cases an ensemble of 10 appeared to be sufficient
to sample the probability distribution of the seasonal
climate variability with a given AGCM and SST sce-
nario. Because initialization shocks may result from
using AGCM-based reanalysis products as initial con-
ditions in alternative AGCMs, the individual en-
semble members were initialized from continually
updated simulations using observed sea surface tem-
peratures, and thus they did not include any informa-
tion about the actual initial conditions of the
observed atmosphere.

4. Statistical tools

The raw output of numerical models, whether of
the atmosphere alone or of the coupled ocean–
atmosphere system, is not enough to permit a forecast
to be made. The great sensitivity of the behavior of the
atmosphere to small differences in initial conditions
makes it necessary to use ensembles of many model
executions, but it adds a complex step in the need to
interpret the ensemble output. Statistical analyses of
the model outputs therefore are required. In addition,
at the present state of such models, statistical predic-
tions from historical data can provide useful ancillary
information.

a. Ensemble means
Ensemble methods typically are used to indicate

the range of possible climate outcomes for a given SST
boundary forcing (Milton 1990; Murphy 1990;
Mureau et al. 1993; Tracton and Kalnay 1993; Déqué
et al. 1994; Harrison 1995; Anderson 1996), but meth-
ods of presenting and interpreting the forecast infor-
mation contained within the ensemble are not obvious.
In addition, because of model errors and biases, the
ensemble distribution may not accurately represent the
true distribution of possible outcomes. The IRI EFD
has adopted and developed a range of methods for dis-
playing AGCM ensemble output.

The simplest form of presentation of ensemble in-
formation is the ensemble mean (Fig. 2a). Maps of the
ensemble mean climate predictions together with in-

formation based on the historical performance of the
model are produced. A mask is applied to the model-
predicted anomaly map such that the anomalies are
shaded only in regions where the model skill, as mea-
sured by the correlation between the ensemble mean
anomaly and the observed anomaly, is statistically sig-
nificant (Fig. 2b). For the temperature predictions, the
anomaly fields are plotted; for the precipitation, the
anomalies are expressed as an absolute quantity
(mm day−1) (Fig. 3) and as a relative quantity (% nor-
mal, where 100% normal implies no anomaly)
(Fig. 4).

The correlation mask indicates where the model
simulates the observed climate variability reasonably
well. Because the correlation coefficient is an imper-
fect measure of model performance (Potts et al. 1996),
the correlation mask may hide the output in some
places where there is some model skill. In other places,

FIG. 2. (a) Ensemble mean prediction of January–March 1998
air temperature anomalies (°C) relative to a 1961–90 climatology.
The prediction was produced in December 1997 and consists of
10 ensemble members from the CCM3 model forced with fore-
cast tropical Pacific and Indian Ocean SSTs, with persisted anoma-
lies elsewhere. In (b) the temperature anomalies are masked where
the correlation between simulated and observed variability does
not exceed the 90% confidence level for this season over the years
1950–94.
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systematic model biases may result in poor correla-
tions with observed climate variability, but simple cor-
rections to the model output may provide some useful
information. One approach to capturing this informa-
tion is to compile “ensemble mean contingency
tables,” thus comparing the historical performance of
the model to the observations according to tercile clas-
sifications rather than by some form of squared error
statistic, such as the correlation coefficient. The cli-

mate anomalies are classified such that, in the case of
precipitation (temperature), the wettest (warmest) third
of the values is defined as “above normal,” the middle
third is “near normal,” and the driest (coldest) third is
“below normal.” The contingency table is built by
counting how often the observed anomaly was above,
near, or below normal given the predicted category.
A table is built for each grid point for the season un-
der consideration, and the information is displayed as

FIG. 3. (a) Ensemble mean prediction of September–Novem-
ber 1997 anomalous precipitation rates (mm day−1) relative to a
1961–90 climatology. The prediction was produced in Septem-
ber 1997 and consists of 10 ensemble members from the
ECHAM3 model forced with forecast SST anomalies for the tropi-
cal Pacific and Indian Oceans, and persisted anomalies elsewhere.
In (b) the anomalous precipitation rates are masked where the
correlation between simulated and observed variability does not
exceed the 90% confidence level for this season over the years
1950–94.

FIG. 4. (a) Ensemble mean prediction of September–Novem-
ber 1997 anomalous precipitation as a percentage of average sea-
sonal rainfall relative to a 1961–90 climatology. The prediction
was produced in September 1997 and consists of 10 ensemble
members from the ECHAM3 model forced with forecast SST
anomalies for the tropical Pacific and Indian Oceans, and persisted
anomalies elsewhere. In (b) the anomalous precipitation is masked
where the correlation between simulated and observed variabil-
ity does not exceed the 90% confidence level for this season over
the years 1950–94.
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four maps (Fig. 5). The first
shows the spatial probabilities
associated with an above-normal
prediction (Fig. 5a), the second
shows the probabilities of near
normal (Fig. 5b), the third shows
the probabilities of below nor-
mal (Fig. 5c), and the fourth is a
rebuilt forecast (Fig. 5d). The
rebuilt forecast highlights a cat-
egory that has been assigned
a probability of at least 50%.
For those points for which two
neighboring categories are ap-
proximately equally likely, and
the third has been assigned a
probability of less than 30%,
then the rebuilt forecast indi-
cates the improbability of the
“unlikely category.” Following
this logic, the rebuilt forecast
consists of five categories: “dry,”
“not wet,” “near normal,” “not
dry,” and “wet,” in the case of
precipitation.

b. Estimation of forecast
probabilities
In addition to displaying the

ensemble mean predictions and
forecast probabilities estimated
from the ensemble mean, sev-
eral methods for extracting and
displaying the information con-
tained in the distribution of the
ensemble members are used.
Although it can be demonstrated
that the ensemble mean pro-
vides a more skillful forecast than an individual en-
semble member, there can be additional important
information in the ensemble spread. For a number of
predefined regions, the distribution of the ensemble
members, the ensemble mean, and the observational
anomaly are plotted for each year (Fig. 6a). The plot
indicates the year-to-year variability in the spread of
the ensemble members, how that spread may be re-
lated to the accuracy of the prediction, and whether
the model has performed better for positive or nega-
tive anomalies. In addition, the role of extreme en-
semble members and the appearance of bimodal
distributions can be investigated from the plot. The

historical distribution of the ensemble members is
then used to construct a climatological probability dis-
tribution function/curve for the region, against which
the distribution of the current ensemble of predictions
from the same model can be compared (Fig. 6b). A
climate signal in the regional prediction should appear
as a discernable shift of the forecast distribution rela-
tive to the climatological distribution.

Another simple approach for calculating and rep-
resenting forecast probabilities is to calculate the per-
centages of ensemble members with positive or
negative anomalies, or that fall within the upper,
middle, and lower terciles. Maps showing the percent-

FIG. 5. Probability that the precipitation will fall into the (a) above-normal, (b) near-nor-
mal, or (c) below-normal tercile, given the current ensemble mean forecast shown in Figs.
2 and 3 and the previous behavior of the AGCM’s ensemble mean climate response; (d) a
“rebuilt” forecast based on the category shown in (a)–(c) that has the greatest probability.
Full details of how the rebuilt forecast is made are provided in the text.
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ages of ensemble members simulating temperature and
rainfall anomalies in each tercile are produced by the
IRI EFD for each AGCM and sea surface temperature
scenario. Similar maps are produced indicating the
percentage of ensemble members in the upper and
lower 15th percentiles. An example is provided in
Fig. 7, showing the ECHAM3 prediction for Africa for
September–November 1997 from August 1997, using
persisted SST anomalies. The model indicated high
probabilities of extremely wet conditions over much
of eastern Africa. In some areas in the region over
500% of the long-term average rainfall for September–
November was received.

While it can be demonstrated that even when the
probabilities are unreliable, such probabilistic forecast
information is of potentially greater value to decision
makers than deterministic forecasts (Thompson 1962;
Murphy 1977; Krzysztofowicz 1983), clearly it is pref-
erable for the forecast probabilities to correspond with
the observed relative frequency of the forecast event
as closely as possible (Murphy and Winkler 1987).
Some adjustment for reliability is therefore made to
the ensemble percentages based on the capture rates

of the ensembles. The adjust-
ments are usually small and do
not fully correct for model bi-
ases to the same extent as the
contingency table–based ap-
proach described above.

c. Statistical inflation of
ensemble size
Given that model ensembles

are used to estimate the prob-
ability distribution of possible
climate outcomes, the model’s
response to boundary forcing
should sample the observed
distribution as accurately and
with as much resolution as pos-
sible. Larger ensembles provide
greater resolution in defining
the shape of the probability dis-
tribution (Buizza et al. 1998),
but considerable computer re-
sources are required to produce
large ensemble sizes. A simple,
computationally efficient, non-
parametric statistical approach
for inflating ensemble sizes has
been developed (Graham et al.

1999, manuscript submitted to Mon. Wea. Rev.). This
method, known as ensemble likelihood values from
inferred statistics, is based upon the assumption that,
apart from the influence of the SST boundary condi-
tions, monthly values within any individual ensemble
member are independent. The assumption, if valid,
permits seasonal values to be calculated by combin-
ing monthly values from different ensemble members.
This method of inflating the ensemble size appears to
provide a notable improvement in forecast skill in
areas where there is a high degree of ensemble scat-
ter and positive model skill.

d. ENSO-related climate
probabilities
The studies of Ropelewski and Halpert (1987, 1989)

and Halpert and Ropelewski (1992) provide a guide to
the expected climatic impacts of ENSO extremes (i.e.,
El Niño and La Niña). Simply knowing that an ENSO
episode is under way appears to be sufficient to make
a forecast that would improve upon one predicting that
conditions would be the same as the average for that
time of year over the past decade or two (such a forecast

FIG. 6. (a) Historical performance of the ECHAM3 model for the August–October sea-
son compared to observations averaged over the “Indonesia” region (10°S–20°N, 95°–
140°E). The open blue circles show the model anomaly for individual ensemble members
(expressed as a percentage of long-term mean), solid blue circles show the ensemble mean,
and red crosses indicate the observed anomaly. The green circles are for the current fore-
cast, and the solid green circle represents the ensemble mean. The gray-shaded area indi-
cates the range of the near-normal tercile based on the climatological period 1961–90. The
numbers at the top of the graph indicate the correlation between the ensemble mean simu-
lation and the observed anomalies (R) and the tercile hit score (P). (b) Distribution of fore-
cast members for August–October 1997 (open green bars) relative to the climatological
distribution (solid blue bars).
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is referred to as climatology).
The IRI forecast process uses
historical manifestations of
ENSO extremes as a guide to
check and improve upon the
model results.

The historical impacts of El
Niño and La Niña events on
rainfall anomalies can be illus-
trated effectively by calculating
the observed percentage of times
that seasonal rainfall has been in
the upper, middle, and lower
climatological terciles during
ENSO extremes. Three-month
mean NIÑO3 indices were cal-
culated using the Kaplan et al.
(1998) sea surface temperature
data, and the warmest 10 epi-
sodes since 1950 were identified
for each season. The number of
times that the observed precipi-
tation and temperature anoma-
lies during these warm extremes
were in each tercile were calcu-
lated for each grid point and
were expressed as relative fre-
quencies (Fig. 8). These values
give some indication of the like-
lihood of observing a climate
anomaly in each of the categories during strong
El Niño or La Niña years. The significance of the dif-
ference between the calculated percentages and those
expected by chance can be calculated using the hyper-
geometric theorem, or by permutation methods.

e. Analog years
The value of using ENSO conditions in general as

a guide to likely climate anomalies is limited. ENSO
episodes vary in strength and configuration, and some
consideration must be given to these variations. Given
the extreme nature of the 1997/98 sea surface tempera-
ture anomalies in the equatorial Pacific and tropical
Indian Oceans, the atmospheric response to the glo-
bal boundary layer almost inevitably would be domi-
nated by the Indo–Pacific forcing. Therefore some
similarities to the 1982/83 El Niño, which was of an
approximate equal strength (peak NIÑO3.4 and
monthly Southern Oscillation index anomalies actu-
ally exceed those in 1997/98), could be expected.
Maps of 3-month climate anomalies during 1982/83

were produced, to highlight areas with marked climate
anomalies, which would possibly suggest strong cli-
mate responses to major ENSO episodes. The AGCM
predictions for 1997/98 were compared with those for
1982/83 to help indicate systematic model biases. As
an example, a systematic northeastward shift of a band
of anomalously wet conditions over central southeast-
ern South America was found to occur (Fig. 9), and
so forecasts were adjusted accordingly.

f. Process
The various model predictions that are generated

each month by the IRI EFD are not released to the
general public. Instead the model predictions and sta-
tistical inputs are combined in a subjective manner to
produce a “net assessment,” an example of which is
illustrated in Fig. 10. Inputs from external sources such
as the European Centre for Medium-Range Weather
Forecasts (ECMWF), national weather services (e.g.,
Barnston et al. 1999b), and the various regional con-
sensus climate outlooks are considered when available.

FIG. 7. Percentages of ECHAM3 ensemble member predictions for September–November
1997 in the extreme 15th percentiles. The predictions were produced in August 1997 using
persisted sea surface temperature anomalies.
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The respective value of all available information is
assessed using available skill measurements, and a
best-estimate forecast is provided in the net assess-
ments. The net assessment forecasts are expressed in
terms of probabilities of the respective season’s rain-
fall (temperature) being in the wettest (warmest) third,
in the driest (coldest) third of years, and in the third
centered upon the climatological median. Indications
of inflated risk of precipitation anomalies being in the
extreme 15th percentiles have been provided since
April 1998. The April–June 1998 first risk of extremes
map is indicated in Fig. 11a. The extreme forecasts,
including those for April–June 1998, have consistently
shown a strong tendency to underforecast, such that
warnings were not provided for many extreme events

that did occur. Nevertheless, the
hit rate of the forecasts has been
high (Fig. 11b).

The production of the net
assessments follows a proce-
dure that is somewhat similar to
that used in the regional consen-
sus forecast forums. Output
from these regional forums con-
stitutes an important input to the
IRI net assessments. Where
available, regions are delimited
using boundaries that have been
defined by regional experts us-
ing various statistical methods,
including EOFs and cluster
analysis. The results are largely
unpublished, but in many cases,
most notably in Africa, the re-
gions have been defined at pre-
forum workshops. In areas such
as southern Africa, the same
predefined regions are used at
each consensus meeting but
may be combined in varying
ways into larger areas where
forecasts for the current season
are identical. Where regional
expertise is unavailable, the re-
gions used in the net assess-
ments are defined at the IRI on
the basis of model skill and fore-
cast signal, as well as an objec-
tive analysis of interannual
variability based on known
SST-related climate patterns.

The forecast regions are defined by subjectively de-
limiting areas where there is some skill in at least one
of the models, and where there is an indication of a
spatially coherent signal in the current model
predictions.

Once a region has been subjectively delimited, or
provided by regional expertise, estimates of the fore-
cast probabilities are made. Probabilities provided by
the regional forecast forums are revised if the net as-
sessment is for a slightly different period or if new
predictions have become available since the regional
consensus was reached. Where no regional guidance
is provided, the probabilities are estimated from the
following considerations: the level of agreement be-
tween different dynamical and statistical model pre-

FIG. 8. Frequency of occurrence of (a) above-normal, (b) near-normal, and (c) below-
normal January–March precipitation during the 10 strongest El Niño episodes since 1950
(as measured by the average SST anomaly within NIÑO3.4: 5°S–5°N, 120°–170°W).
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dictions, the strength of the sig-
nal in the various predictions,
the respective skill levels of the
models, and subjective confi-
dence in the different predic-
tions, based on confidence in the
various SST forecasts used to
force the AGCMs, for example.

Clearly there is considerable
scope for automating and reduc-
ing the subjective component
involved in defining the forecast
regions and estimating the fore-
cast probabilities. Work is in
progress to combine the various
model predictions objectively,
using information about histori-
cal performance, and to provide
model output for predefined re-
gions rather than model grid
points, possibly including some
form of statistical correction. In
the meantime, operational re-
quirements necessitate the large
subjective element involved in
the production of the net assess-
ments. The operational produc-
tion of the forecasts therefore is
an evolving process as new tools
are gradually developed; the
process did not remain constant
through the 1997/98 episode.
Sea surface temperature sce-
narios used to force the AGCMs
have developed from tropical
Pacific-only forecasts in the
early stages of the El Niño, to
global tropical sea surface tem-
peratures that are used currently.
Postprocessing tools have been
developed on an ongoing basis, and a growing list of
externally produced forecasts and comments has been
considered in the production of the net assessments.

5. Forecast validation

Because of systematic errors in the models used,
it is essential that estimates of confidence in the model
predictions be made. Such estimates provide the fore-
caster with indications of strengths and weaknesses in

the various models, and assist in the subjective com-
bination of the model outputs and statistical products
into the net assessment forecasts. Many of the statis-
tical methods used to validate the models are used to
verify the forecasts produced operationally. Forecast
verification is an essential process for ensuring cred-
ibility for users, and for monitoring forecast reliabil-
ity. Here the observational datasets used, the processes
through which skill estimates are derived, and limited
efforts to determine the quality of forecast performance
are described.

FIG. 9. Comparison of (a) observed December–February precipitation anomalies during
the 1982/83 El Niño with simulated anomalies by the ECHAM3 model forced with (b) ob-
served SSTs, (c) observed Pacific SSTs and climatological SSTs elsewhere, and (d) fore-
cast tropical Pacific SSTs and climatological SSTs elsewhere.
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a. Observational datasets
Production of meaningful climate forecasts re-

quires extensive critical evaluation of the AGCM out-
put based on comparisons with observational data.
Good agreement between model-simulated anomalies
and observed anomalies over a sufficiently long pe-
riod is necessary before a forecast can be made with
any confidence. Therefore, to test the skill of model
hindcasts, the availability of high quality observational
datasets is imperative.

The Jones et al. (1997) air temperature dataset,
which contains SST data over the oceans, has been
used. The dataset extends from 1854 to the present,
but only data for the period 1950–94 are used because
of the preliminary nature of the data since 1994. The
spatial coverage is nearly complete; the only region
lacking consistent data is confined to central Brazil.
This dataset displays a larger and more realistic inter-
annual variance in seasonal temperature anomalies in
the midlatitudes than others that were examined.

A merged precipitation dataset was formed with
the intention of creating a high quality dataset with the
maximum global coverage, for the longest possible
record. Precipitation data from Hulme (1994) serve as
the foundation. This dataset covers the period 1900–
95, although preliminary data are available for more
recent years. The station data from which this gridded
dataset has been constructed are an extension of the
original Climate Research Unit (CRU)/U.S. Depart-
ment of Energy data described in Eischeid et al. (1991).
Additional work by Hulme and the CRU at University
of East Anglia extended the station time series and in-
creased the station network to include over 9000 stations.
These station data have undergone extensive quality
control. However, there are no data over the oceans and
several regions over land are not covered by the Hulme
dataset. These holes have been filled by using other
precipitation datasets. The Global Historical Clima-
tology Network (GHCN) precipitation data cover a
long period and are based on nearly identical station
data as the Hulme dataset, but they have not been as
rigorously controlled. During the years 1950–94, if the
Hulme data are missing, and the GHCN are not, then
the GHCN value is used. After 1979, satellite measure-
ments of rainfall are available. The Climate Prediction
Center Merged Analysis Precipitation (CMAP) dataset
(Xie and Arkin 1996, 1997, 1998) uses several esti-
mates of precipitation as measured by satellite over land
and ocean, as well as gauge data over land. Beginning
in 1979, CMAP data are used over the ocean and over
land where neither Hulme nor GHCN data exist.

Recently use has been made of the reanalysis data
from NCEP (Kalnay et al. 1996) and from ECMWF
(Gibson et al. 1997). These data represent a hybrid
between observations and models, since the observa-
tions are fed through models to produce dynamically
consistent atmospheric fields. The reanalysis data po-
tentially can indicate where discrepancies between
models and observations originate. To the extent that
reanalysis data do represent nature, they are useful for
diagnostic studies, particularly for fields such as mois-
ture fluxes that are not observed directly.

FIG. 10. Net assessment for January–March 1998 precipitation
produced in January 1998.

FIG. 11. (a) Net assessment for April–June 1998 indicating
areas with enhanced risks of precipitation anomalies being within
the wettest and driest 15% of climatological occurrences. The
forecast was produced in April 1998. (b) Observed precipitation
anomalies for April–June 1998 where the observed anomaly was
in the wettest and driest 15% of climatological occurrences.
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b. Long runs and retrospective forecasting
It is essential to have long enough records to de-

fine reliable estimates of the skill of AGCM simula-
tions. At the same time, it is necessary to have
sufficient ensemble members for each model in order
to reduce the climatic noise in the model simulations
(of course it is not possible to remove the climatic
noise from the observations) and to obtain reliable es-
timates of ensemble variability. In order to have con-
fidence in the validation statistics, and to determine
how stable the patterns of variability are, simulations
of at least 25 years are required; longer runs are pref-
erable. The limit of how far back in the past the simu-
lations are useful is dependent on the quality of the
SST data used to force the model and also on the qual-
ity of the observational climate data against which the
model simulations are compared.

To get consistently long runs with sufficient esti-
mates of ensemble variability, simulations with all
three AGCMs covering the period from 1950 to the
present for at least 10 ensemble members have been
completed. The ECHAM3 simulations were forced
with the Reynolds reconstructed SST data (Reynolds
and Smith 1994) for the period 1950–96 and Reynolds
optimally interpolated (OI) SST data (Reynolds 1988)
beginning in 1997. NCEP provided a 13-member en-
semble for the years 1950–94. All 13 NCEP runs were
forced with Reynolds reconstructed SSTs. Recently,
runs using CCM3 were completed yielding a set of 10
simulations also covering 1950–94; five of those runs
were forced with Reynolds reconstructed SSTs
throughout the whole period, and five were forced with
Reynolds reconstructed SSTs through 1980 and OI
data beginning in 1981.

It is unfortunate that the long
run simulations of the different
atmospheric models are not
forced with the same SST fields.
Given the uncertainty in the ob-
servational data, though, the dif-
ferences in SST fields for the
historical simulations are as-
sumed small in comparison to
differences in model formula-
tion. However, a small but no-
ticeable improvement in model
skill is evident in the years fol-
lowing the switch to the opti-
mally interpolated data in the
CCM3 model. How much this
difference in skill is attributable
to the quality of SST data, how
much to the quality of the obser-
vations against which the mod-
els are compared, and how much
to a potential increase in predict-
ability during that period is, as
yet, undetermined.

Because the long run simu-
lations are forced with observed
SSTs, they provide estimates of
the confidence that can be placed
in the model output given per-
fect SST forecasts. These Atmo-
spheric Model Intercomparison
Project (AMIP) style runs give
an estimate of potential predict-
ability that could be achieved

FIG. 12. Correlations between observed and ensemble mean October–December precipi-
tation for the (a) NCEP, (b) CCM3, and (c) ECHAM3 models. The correlations were calcu-
lated using data for 1950–94.
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given perfect SST forecasts. Clearly the persistent and
forecast SST fields used in the operational forecasts
are imperfect, and so the true confidence may be over-
estimated. In order to estimate the loss of predictabil-
ity incurred when using imperfect SST forecasts,
retrospective forecasts using persisted SST anomalies
have been produced using the ECHAM3 model. These
retrospective forecasts have been completed for the pe-
riod 1970 to date for the December–February, March–
May, June–August, and September–November
seasons and are validated in the same manner as the
long runs, as discussed below.

c. Model validation
The long run simulations of the AGCMs used by

the IRI EFD, and the retrospective forecast skill of the
ECHAM3 model, have been validated extensively.
Correlations of ensemble mean simulated precipitation
and air temperature with the respective observations have
been calculated on a grid-by-grid basis using the 45 yr
of long AMIP-style and 23 yr of retrospective runs
(Fig. 12). Correlations for selected area averages are
calculated in addition (Fig. 6). All calculations are per-
formed using 3-month average precipitation rates and
temperatures. In general, correlations for temperature
are greater than for precipitation, and they are higher for
both variables in the Tropics than they are in the mid-
latitudes. However, the models do show significant skill
over many regions in the midlatitudes for at least part
of the year. Comparing the correlation maps of differ-
ent models (Fig. 12) indicates which model(s) are most
likely to produce a reliable forecast over a particular
area, for a particular variable in a particular season.

Similarly, relative operating characteristic (ROC)
scores (Swets 1973; Mason 1982; Mason and Graham
1999) for precipitation and temperature have been
calculated for all 3-month seasons. For all three
AGCMs the scores (defined as the area beneath the
ROC curve as plotted on linear axes) have been cal-
culated using the ensemble mean, a set of 10 ensemble
members, and statistically inflated sets of ensemble
members (Graham et al. 1999, manuscript submitted
to Mon. Wea. Rev.). Events have been defined for the
lower, upper, and middle terciles, and the lower and
upper 15th percentiles. As with the correlations, the
ROC scores have been calculated on a grid-by-grid
basis and for selected area averages. For the retrospec-
tive runs, ROC scores have been calculated using the
five ensemble members available. In general, the ROC
scores mirror the areas and seasons of high predictabil-
ity evident from the correlation maps. However, the

ROC curves provide additional information indicat-
ing the models’ biases toward accurate simulations of
wet or dry conditions. Consistently, the curves indi-
cate poor predictability of near-normal conditions for
both precipitation and temperature in all areas and all
seasons. In some cases, the models appear to be able
to simulate accurately above- but not below-normal
conditions, or vice versa. As an example, both the
ECHAM3 and NCEP models have higher skill in
simulating wet, rather than dry, conditions of the
September–November eastern African rains (Mason
and Graham 1999). In some cases, the ROC curve is
able to indicate predictability not evident from the en-
semble mean correlations. For example, there is some
indication that the ECHAM3 model is able to simu-
late accurately dry conditions of the March–May east-
ern African rains (Fig. 13), which are generally
considered difficult to predict (Mutai et al. 1998).

d. Sensitivity experiments
Sensitivity experiments have been conducted to

determine the qualitative effects of SST variability in

FIG. 13. ROC curves for March–May area-averaged rainfall for
eastern Africa (10°N–10°S, 30°–50°E) from 1950 to 1994. The
hit and false alarm rates were calculated using rainfall simulated
by the ECHAM3–T42 general circulation model forced with ob-
served sea surface temperatures and using 10 ensemble members.
Results are shown for the simulation of rainfall in the upper (blue),
middle (green), and lower (red) terciles. Rates are indicated us-
ing different minimum percentages of ensemble members simu-
lating rainfall in the respective tercile to issue a warning, as
indicated by the values along the curves. The areas, A, beneath
the curves are indicated also.
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various tropical oceans. In these experiments, the SSTs
in a particular ocean basin were varied, and in the other
ocean areas seasonally varying climatological SST
values were prescribed. To date, two of these experi-
ments have been completed, one for the tropical Pa-
cific (20°S–20°N, 120°E–75°W) and one for the
Indian Ocean (north of 40°S and west of 120°E). These
experiments are referred to as Pacific Ocean Global At-
mosphere and Indian Ocean Global Atmosphere. It
was found that the Indian Ocean SST anomalies are
critical for simulating the proper climate signal over
southern and eastern Africa (Goddard and Graham
1999). Rainfall variability in eastern Africa shows a
strong association with the occurrence of ENSO.
However, the simulation indicates that the teleconnec-
tion between ENSO and rainfall in this region of Af-
rica occurs through the Indian Ocean. Thus, to predict
correctly seasonal climate anomalies over eastern Af-
rica, it is necessary to predict Indian Ocean tempera-
tures in addition to predicting tropical Pacific SSTs.

e. Forecast value
Initial estimates of forecast value have been made

based on the 2 × 2 contingency table estimates of fore-
cast quality that form the basis of the ROC curves
described above. The contingency table can be used
to calculate a set of hit and false alarm rates for a set
of forecasts of predefined meteorological or climato-
logical events, such as the seasonal rainfall total be-
ing within the driest 10% of historical values. The
same contingency table is used in the cost–loss model
of forecast value estimation (Murphy 1994), by defin-
ing the cost of mitigation against an expected event,
the mitigated loss if the event occurs, and the loss in-
curred if no warning is provided. Forecast value can
then be calculated given information on event fre-
quency, forecast quality, and on the costs and losses.
From a set of interviews with forecast users in the
southern African region, cost–loss tables were com-
pleted for events of interest to the users. Using the
ECHAM3 retrospective forecasts for December–
February rainfall, averaged over the area approxi-
mately between 23° and 36°S, and between 15° and
32°E, savings of the order of at least U.S. $10 billion
to $10 trillion per year were indicated.

f. Forecast performance
No quantitative measure of forecast performance

has been constructed as yet. One obvious difficulty in
producing such a metric is that the format of the IRI
forecasts is probabilistic, as is generally the case with

climate forecasts. Thus any single forecast can hardly
be said to have any errors, since no zero probability
terciles are forecast and so any observed value can be
said to have been allowed for. Nevertheless, the meth-
ods used to validate a set of forecasts made through
time can be applied to estimate the performance of a
specific forecast over an area. Heidke skill scores
(Wilks 1995) for the precipitation net assessments pro-
duced by the IRI for the 12-month period October
1997–September 1998 are summarized in Tables 1 and
2. The Heidke skill score treats the forecasts determin-
istically and so gives a rather crude estimate of their
skill but it does provide a useful and relatively simple
estimate of skill. The net assessments are being veri-
fied more comprehensively, and there are plans to re-
port on the results in detail elsewhere.

In general, the skill of the net assessments for pre-
cipitation during the lifetime of the 1997/98 El Niño
was highest for the Southern Hemisphere, at the
shorter lead time. The net assessment forecast skill for
South America was consistently high, while skill for
Europe and Asia was low. In most cases the forecasts
have been more skillful than chance, and they were a
small improvement over forecasts of persistence of the
last month’s climate anomaly and over the use of pure
ENSO-related climate statistics. It is expected that the
quality of the net assessment forecasts will improve
as the tools used in their production are developed, and
the experience of the forecasters increases.

6. Future plans

The IRI EFD operational climate forecast system
has proven itself already to be a valuable contribution
to a global community that needs to find better means
of protecting itself from variations in weather and cli-
mate. In order to improve upon this performance, sev-
eral means of enhancing the numerical model forecasts
have been identified, and a number of these are being
implemented. The main areas of development include
an improvement in spatial resolution through down-
scaling and by higher-resolution AGCMs, and the
implementation of a fully coupled ocean–atmosphere
model in the IRI EFD. In the shorter term, an agree-
ment has been reached with ECMWF to validate and
experiment with the use of the SST forecasts from their
fully coupled model (Stockdale et al. 1998b). Some
initial progress in these areas is detailed here.

In an attempt to downscale the information pro-
vided by the AGCMs at T42 resolution, the NCEP
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nested regional spectral model (RSM) has been used
to simulate September–January rainfall variability
over eastern Africa for the period 1970/71 to 1996/97
(Sun et al. 1999, manuscript submitted to J. Geophys.
Res.). The regional model has been run at a resolution
of 80 km with a very high resolution 20-km nest over
Kenya. There are 19 vertical layers. The nested sys-

tem has realistic vegetation and detailed topography.
The outputs from the ECHAM3 atmospheric climate
model provide the large-scale circulation forcing for
the nested system. From two numerical integrations, an
ensemble mean has been calculated and validated using
an observational network of over 300 rainfall stations
throughout Kenya. The nested system captures both

Africa 14.4 −9.1 2.2 13.9 20.7 1.7 25.2 22.7 −6.0 17.8 11.4 −0.7

Asia 5.2 3.8 −8.7 −11.9 −34.3 3.3 11.3 19.8 5.7 1.5 −16.8 0.1

Australasia 39.0 45.3 1.8 36.3 50.0 37.5 11.1 6.5 −57.1 28.8 33.9 −5.9

Europe 16.5 −35.9 −17.6 −59.3 −5.1 28.1 −7.6 −24.5 16.8 −16.8 −21.8 9.1

North America 12.2 27.3 −9.4 12.1 14.1 −8.0 −4.9 29.3 −6.3 6.5 23.6 −7.9

South America 31.3 9.9 8.9 35.9 25.7 22.8 18.5 −5.2 12.2 28.6 10.1 14.6

Globe 14.5 8.9 −4.5 6.3 8.2 6.4 11.1 5.3 2.6 10.6 7.5 1.5

TABLE 1. Heidke skill scores for the 0-month lead precipitation net assessments. The scores in italic are for a forecast of persis-
tence of the latest month’s climate anomaly (middle column) and for a forecast based on the frequency of occurrence of above-normal,
near-normal, and below-normal precipitation during the 10 strongest El Niño episodes since 1950 (as measured by the average SST
anomaly within NIÑO3: 5°S–5°N, 90°–150°W) (third column).

OND 1997 JFM 1998 AMJ 1998 Average

Africa N/A 12.0 23.3 1.7 4.1 2.2 −6.0 8.1 12.8 −2.1

Asia N/A −7.1 −27.9 3.3 12.8 −8.7 5.7 2.9 −18.3 4.5

Australasia N/A 43.1 52.8 37.5 −15.4 −20.9 −57.1 13.9 16.0 −9.8

Europe Ν/Α −22.2 −6.2 28.1 −28.2 −20.5 16.8 −25.2 −13.4 22.5

North America N/A 9.4 11.9 −8.0 1.1 23.0 −6.3 5.3 17.5 −7.1

South America N/A 34.7 24.4 22.8 9.6 −6.2 12.2 22.2 9.1 17.5

Globe N/A 9.7 10.4 6.4 3.3 1.6 2.6 6.5 6.0 4.5

TABLE 2. Heidke skill scores for the 3-month lead precipitation net assessments. The scores in italic are for a forecast of persis-
tence of the latest month’s climate anomaly (middle column) and for a forecast based on the frequency of occurrence of above-nor-
mal, near-normal, and below-normal precipitation during the 10 strongest El Niño episodes since 1950 (as measured by the average
SST anomaly within NIÑO3: 5°S–5°N, 90°–150°W) (third column).

OND 1997 JFM 1998 AMJ 1998 Average
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the large-scale characteristics of the circulation and the
terrain-induced local features such as local precipita-
tion maxima. The model reproduced the observed in-
terannual variability of the Kenyan short rains and of
the timing of the onset of rains in most of the years.
Gridpoint correlations between simulated precipitation
at the 20-km resolution and the observations exceed
0.4 over much of Kenya (the critical correlation at the
95% level of confidence is 0.38) and locally exceed
0.8 over the 27-yr period in a few places (Fig. 14).

An alternative method for improving the spatial
detail of the numerical predictions is to run the
AGCMs at a higher resolution (Buizza et al. 1998).

The ECHAM3 model has been configured at T106
resolution (approximately 1° horizontal resolution)
and forced with the seasonal cycle of SSTs. These runs
show improvement in the simulated distribution of
annual mean precipitation of the underlying topogra-
phy, which impacts the simulated climate both locally
and remotely (through orographic forcing of atmo-
spheric long waves). An experimental prediction was
produced with this high-resolution AGCM during the
1997/98 El Niño, but it was not included in the net as-
sessments because the skill of the model with this con-
figuration has not yet been determined. The model
currently is being forced with observed SSTs dating
back to 1950 in order to produce an ensemble of
AMIP-style simulations similar to those available at
T42 resolution.

In addition to improving forecast skill by down-
scaling methods, the IRI EFD is investigating means
of improving the global SST forecasts. An agreement
has been reached with ECMWF to use their global SST
forecasts as boundary conditions for the AGCMs used
by the IRI, as an alternative to the blend of dynami-
cal, statistical, and persistence forecasts that are used
currently. Retrospective forecasts have been produced
by ECMWF since 1991 (Stockdale et al. 1998b). Al-
though this is too short a period to validate the model
robustly, some estimates of the skill of the SST fore-
casts will be calculated before incorporating these
fields into the operational AGCM forecasts. At a later
date, the IRI EFD in collaboration with the IRI MRD
will use a global, fully coupled ocean–atmosphere
model, permitting the eventual execution of a one-
tiered forecasting system.

Enhancements in the forecast format are planned,
and close collaboration with the IRI CMD and ARD
will be maintained to define the most useful directions
for improvements and new products. Enhancements
to the skill of the net assessments should be attainable
through the availability of output from statistical post-
processing of the model simulations, which are being
tested and implemented. By fostering collaboration
with other research groups and national meteorologi-
cal services, additional gains in skill can be achieved
through an extension of the inclusion of regional ex-
pertise in the production of the net assessments.

7. Concluding remarks

The International Research Institute for Climate
Prediction (IRI) was formed in late 1996 with the aim

FIG. 14. Correlation between simulated and observed October–
December rainfall over Kenya from 1970 to 1996 for (a) the
ECHAM3–T42 model, (b) the RSM model at 80-km resolution,
and (c) the RSM model at 20-km resolution.
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of fostering the improvement, production, and use of
global forecasts of seasonal to interannual climate vari-
ability for the explicit benefit of society. The devel-
opment of an El Niño in early 1997, and its rapid
development into a major episode, provided an ideal
opportunity to generate and distribute seasonal climate
forecasts on an operational basis. The IRI EFD has
taken an active role in forecasting this El Niño and
global climate anomalies during the 1997/98 season
and has continued to produce forecast information
during the 1998/99 La Niña.

The IRI EFD has developed a two-tiered forecasting
system, in which forecasts of global tropical SSTs are
generated first and then used as boundary forcing for a
suite of atmospheric models. The need for forecasts of
global tropical SSTs has been demonstrated from expe-
rience of forecasting climate variability over Africa,
where the use of persisted SST anomalies can result
in incorrect climate signals in some areas. In produc-
ing global climate forecasts, the IRI EFD has made use
of a multimodel ensemble approach since no one
model is able to provide accurate simulations of cli-
mate variability in all regions and all seasons. All the
models used have been validated extensively to iden-
tify model strengths and weaknesses, and to ensure that
it is possible to make reliable estimates of the confi-
dence that can be placed in the model predictions. In
addition to the various numerical and statistical models
that are run at the IRI, an effort is made to access as much
forecast information as possible from centers around
the world, in the production of the net assessments.

Forecasts of precipitation and air temperature are
presented in the form of “net assessments,” following
the format adopted by the regional consensus forums,
and are distributed via the World Wide Web (http://
iri.ucsd.edu/forecasts/net_asmt) and with the assis-
tance of the IRI Climate Monitoring and Dissemina-
tion Division (IRI CMD). During the 1997/98 El Niño,
the skill of the net assessments for precipitation was
greater than chance, except over Europe, and in most
cases was an improvement over a forecast of persis-
tence of the latest month’s climate anomaly and over
ENSO-related climate statistics. Net assessments in-
dicating enhanced risk of extreme precipitation
anomalies have been highly successful.
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